
chimes_calculator Documentation
Release 0.0.1

Rebecca K. Lindsey, Nir Goldman, & Laurence E. Fried

Mar 16, 2023

CONTENTS

1 ChIMES Calculator Quickstart guide 3

2 Getting Started 5

3 ChIMES Calculator Releases 7

4 The ChIMES Calculator 9

5 The ChIMES Calculator Serial Interface 21

6 Support for Linking with External Codes 33

7 ChIMES Parameter Files 35

8 ChIMES Units 37

9 ChIMES Calculator Utilities 39

10 Citing ChIMES 43

11 Contributing to ChIMES 47

12 Legal 49

13 Contact 53

i

ii

chimes_calculator Documentation, Release 0.0.1

The Chebyshev Interaction Model for Efficient Simulation (ChIMES) is a machine-learned interatomic potential tar-
geting chemistry in condensed phase systems. ChIMES models are able to approach quantum-accuracy through a
systematically improvable explicitly many-bodied basis comprised of linear combinations of Chebyshev polynomials.
Though originally developed to enable description of organic molecular materials, ChIMES has successfully been ap-
plied to systems spanning ambient water to molten carbon, and leveraged as correction for density functional based
tight binding simulations.

The ChIMES calculator comprises a flexible tool set for evaluating ChIMES interactions (e.g. in simulations, single
point calculations, etc). Users have the option of directly embedding the ChIMES calculator within their codes (e.g.
see ‘’The ChIMES Calculator,” for advanced users), or evaluating interactions through the beginner-friendly serial
interface, each of which have Python, C++, C, and Fortran API’s. Files necessary for linking to popular simulation
codes are being continually added with ancillary support. For more information see the links below.

The ChIMES Calculator is developed at Lawrence Livermore National Laboratory with funding from the US Depart-
ment of Energy (DOE), and is open source, distributed under the terms of the LGPL v3.0 License.

Note: This documentation is under still construction.

CONTENTS 1

chimes_calculator Documentation, Release 0.0.1

2 CONTENTS

CHAPTER

ONE

CHIMES CALCULATOR QUICKSTART GUIDE

For more detailed instructions, see the Getting Started page.

1.1 Obtain a copy

1. Create a fork of the code

2. Clone a copy of the code to your computer or high-performance computer (HPC)

1.2 Installing

If your environment is correctly configured, you can install by simply executing ./install.sh.

If you are on a HPC using module files, you may need to load them first. Module files are already configured for a
handful of HPC - inspect the contents of modfiles to see if yours is listed. If it is (e.g., LLNL-LC.mod), execute export
hosttype=LLNL-LC; ./install.sh to install. Otherwise, load the appropriate modules by hand before running the
install script.

Note: Consider submitting module files and corresponding install.sh changes as a pull request, for your HPC!

1.3 Running

You can test your installation by running an example job, e.g., by executing the following in your base chimes_calculator
directory:

serial_interface/examples/cpp/chimescalc \
serial_interface/tests/force_fields/published_params.liqC.2b.cubic.txt \
serial_interface/tests/configurations/liqC.2.5gcc_6000K.OUTCAR_#000.xyz | tee my_test.log

3

https://github.com/rk-lindsey/chimes_calculator

chimes_calculator Documentation, Release 0.0.1

4 Chapter 1. ChIMES Calculator Quickstart guide

CHAPTER

TWO

GETTING STARTED

2.1 Obtaining the code

2.1.1 LLNL Employees:

Please see the special Bitbucket instructions

2.1.2 GitHub Users:

Please see the special Github instructions

2.2 Compiling and running the code

As described above, the chimes_calculator comprises library tools for evaluating ChIMES interactions. However,
the repository contains several usage examples (see, e.g. ChIMES Calculator and ChIMES Calculator Serial Interface
examples.). These examples can be compiled by navigating to a given example sub directory (e.g. chimes FF/
examples/cpp/) and typing make.

Alternatively, the entire software suite can be compiled at once using CMake, via the install script - note that C++, C,
and Fortran compilers are all required to use the this approach.

If your environment is correctly configured, you can simply execute ./install.sh.

If you are on a HPC using module files, you may need to load them first. Module files are already configured for a
handful of HPC - inspect the contents of modfiles to see if yours is listed. If it is (e.g., LLNL-LC.mod), execute export
hosttype=LLNL-LC; ./install.sh to install. Otherwise, load the appropriate modules by hand before running the
install script.

Note: Consider submitting module files and corresponding install.sh changes as a PR, for your HPC!

, or executing the appropriate CMake commands by simply running ./install.sh from the base
chimes_calculator directory. If the latter option is used, a list of generated executables/library files and
their respective install locations can be found in the generated build/install_manifest.txt file. Note that C++,
C, and Fortran compilers are all required to use the ./install.sh approach.

Sample ChIMES parameter and input files are provided in the serial_interface/tests/force_fields and
serial_interface/tests/configurations directories, allowing compiled executables to be tested via, e.g.:

5

chimes_calculator Documentation, Release 0.0.1

serial_interface/examples/cpp/chimescalc \
serial_interface/tests/force_fields/published_params.liqC.2b.cubic.txt \
serial_interface/tests/configurations/liqC.2.5gcc_6000K.OUTCAR_#000.xyz | tee my_test.log

For additional details on using, integrating, and compiling, and contributing, see:

• The ChIMES Calculator

• The ChIMES Calculator Serial Interface

• Contributing

6 Chapter 2. Getting Started

CHAPTER

THREE

CHIMES CALCULATOR RELEASES

• v1.0.2: (Jan. 6 2022) Test suite bug fixes, file renaming, documentation update

• v1.0.1: (Dec. 22, 2021) CMake/Make bugfixes

• v1.0.0: (Dec. 12, 2021) First stable release

7

chimes_calculator Documentation, Release 0.0.1

8 Chapter 3. ChIMES Calculator Releases

CHAPTER

FOUR

THE CHIMES CALCULATOR

4.1 Overview

ChIMES is a reactive explicitly many-bodied machine learned interatomic potential (ML-IAP) for which interactions
are computed on the basis of atom clusters. For example, the total ChIMES energy is given as:

𝐸𝑛B
=

𝑛𝑎∑︁
𝑖1

1𝐸𝑖1 +

𝑛𝑎∑︁
𝑖1>𝑖2

2𝐸𝑖1𝑖2 +

𝑛𝑎∑︁
𝑖1>𝑖2>𝑖3

3𝐸𝑖1𝑖2𝑖3 + · · ·+
𝑛𝑎∑︁

𝑖1>𝑖2···>𝑖𝑛B−1>𝑖𝑛B

𝑛𝐸𝑖1𝑖2...𝑖𝑛

(4.1)

where 𝐸𝑛B
is the total ChIMES system energy, 𝑛B is the maximum bodiedness, 𝑛𝐸𝑖1𝑖2...𝑖𝑛 is the 𝑛-body ChIMES

energy for a given set of 𝑛 atoms with indices 𝑖 = 𝑖1, 𝑖2, . . . , 𝑖𝑛, and 𝑛𝑎 is the total number of atoms in the system.
In the ChIMES framework, single-body energies are constant values and 𝑛-body energies are constructed from the
product of polynomials of transformed atom pair distances. Thus, a 2-body interaction would involve a single pair, 𝑖𝑗,
while a three-body interaction would involve three pairs, 𝑖𝑗, 𝑖𝑘, and 𝑗𝑘, a 4-body interaction would involve

(︀
4
2

)︀
pairs,

and so on. Currently, the ChIMES calculator supports up to 4-body interactions.

For further details of the ChIMES ML-IAP equations, the reader is referred to the following. For a complete set of
ChIMES references, see Citing ChIMES.

1. R.K. Lindsey*, L.E. Fried, N. Goldman, J. Chem. Theory Comput., 13 6222 (2017). (link)

2. R.K. Lindsey*, L.E. Fried, N. Goldman, J. Chem. Theory Comput. 15 436 (2019). (link)

3. R.K. Lindsey*, N. Goldman, L.E. Fried, S. Bastea, J. Chem. Phys. 153 054103 (2020). (link)

4. R.K. Lindsey*, L.E. Fried, N. Goldman, S. Bastea, J. Chem. Phys. 153 134117 (2020). (link)

Corresponding authors are indicated with an asterisk (*).

4.2 Sections

• ChIMES Calculator

• C API

• Fortran API

• Python API

• Implementation Examples

9

https://doi.org/10.1021/acs.jctc.7b00867
https://doi.org/10.1021/acs.jctc.8b00831
https://doi.org/10.1063/5.0012840
https://doi.org/10.1063/5.0021965

chimes_calculator Documentation, Release 0.0.1

4.3 The ChIMES Calculator

The ChIMES Calculator source files are located in chimesFF/src. To use in a C++ code, simply #include
"chimescalc.h" in the target code and instantiate a chimesFF object. As described in greater detail below, chimesFF
objects take information on individual atom clusters and provide the corresponding ChIMES energy, stress tensor, and
forces. Any such code must at least include the following operations, in order:

int my_rank = 0;
chimesFF my_chimesFF_object; // Instantiate
my_chimesFF_object.init(my_rank); // Set MPI rank (replace with zero if used␣
→˓in serial code)
my_chimesFF_object.read_parameters("my_parameter_file");

Note that the ChIMES calculator chimesFF class provides users with the following functions:

10 Chapter 4. The ChIMES Calculator

chimes_calculator Documentation, Release 0.0.1

Return Type Name Arguments and Description
void init

Type Description
int MPI rank

Set the MPI rank. With the excep-
tion of error messages, the ChIMES
calculator will only print output for
rank 0.

void read_parameters

Type Description
string Parameter file

Read the chimes parameter file.
void set_atomtypes

Type Description
vec-
tor<string>

List of atom types de-
fined by parameter file
(updated by function)

Update the input vector with atom
types in the parameter file.

double max_cutoff_2B

Type Description
bool Flag: If true, prints largest

2-body cutoff

Returns the maximum 2-body outer
cutoff distance.

double max_cutoff_3B

Type Description
bool Flag: If true, prints largest

3-body cutoff

Returns the maximum 3-body outer
cutoff distance.

double max_cutoff_4B

Type Description
bool Flag: If true, prints largest

4-body cutoff

Returns the maximum 4-body outer
cutoff distance.

void compute_1B

Type Description
int Atom type index
double Energy (updated)

Update energy with the single atom
contribution.

void compute_2B

Type Description
dou-
ble

Distance between two
atoms, i and j

vec-
tor<double>

Distance vector compo-
nents for each atom

vec-
tor<int>

Type indices for atoms i
and j

vec-
tor<vector<double*
> >

Force pointer ([atom in-
dex (out of 2)][compo-
nent index (i.e. fx=0,
fy=1, fz=3)]) (contents
updated by function)

vec-
tor<double*>

Stress tensor pointer
([s_xx, s_xy, s_xz,
s_yx, s_yy, s_yz, s_zx,
s_zy, s_zz]) (contents
updated by function)

dou-
ble

Energy (updated by
function)

Update the force pointer, stress ten-
sor pointer, and energy with the two-
atom contribution.

void compute_3B

Type Description
vec-
tor<double>

Distances between three
atoms, ij, ik, and jk

vec-
tor<vector<double>
>

Distance vector compo-
nents for each atom

vec-
tor<int>

Type indices for atoms i,
j and k

vec-
tor<vector<double*
> >

Force pointer ([atom in-
dex (out of 3)][compo-
nent index (i.e. fx=0,
fy=1, fz=3)]) (contents
updated by function)

vec-
tor<double*>

Stress tensor pointer
([s_xx, s_xy, s_xz,
s_yx, s_yy, s_yz, s_zx,
s_zy, s_zz]) (contents
updated by function)

dou-
ble

Energy (updated by
function)

Update the force pointer, stress ten-
sor pointer, and energy with the
three-atom contribution.

void compute_4B

Type Description
vec-
tor<double>

Distance between four
atoms, ij, ik, il, jk, jl,
and kl

vec-
tor<vector<double>
>

Distance vector compo-
nents for each atom

vec-
tor<int>

Type indices for atoms i,
j, k and l

vec-
tor<vector<double*
> >

Force pointer ([atom in-
dex (out of 4)][compo-
nent index (i.e. fx=0,
fy=1, fz=3)]) (contents
updated by function)

vec-
tor<double*>

Stress tensor pointer
([s_xx, s_xy, s_xz,
s_yx, s_yy, s_yz, s_zx,
s_zy, s_zz]) (contents
updated by function)

dou-
ble

Energy (updated by
function)

Update the force pointer, stress ten-
sor pointer, and energy with the four-
atom contribution.

4.3. The ChIMES Calculator 11

chimes_calculator Documentation, Release 0.0.1

4.3.1 The C API

The C API (chimescalc_C*) is located in chimesFF/api. This wrapper provides C style name mangling and creates
a set of C-style wrapper functions. The latter are needed for compatibility with std::vector which is heavily used in
chimesFF and not supported in most other languages. Any C code attempting to use the ChIMES Calculator should
#include "chimescalc_C.h" and at least include the following operations, in order:

int my_rank = 0;
set_chimes(); // Instantiate
init_chimes(my_rank); // Set MPI rank (replace with zero if used in serial␣
→˓code)
chimes_read_params("my_parameter_file");

For additional information on compiling, see Implementation Examples.

Note that the ChIMES calculator chimescalc_C API provides users with the following functions:

12 Chapter 4. The ChIMES Calculator

chimes_calculator Documentation, Release 0.0.1

Return Type Name Arguments and Description
void set_chimes No arguments. Instantiates a pointer

to a chimesFF object.
void init_chimes

Type Description
int MPI rank

Set the MPI rank. With the excep-
tion of error messages, the ChIMES
calculator will only print output for
rank 0.

void chimes_read_params

Type Description
char* Parameter file

Read the chimes parameter file.
int get_chimes_2b_order No arguments. Returns the two body

order set by the parameter file.
int get_chimes_3b_order No arguments. Returns the three

body order set by the parameter file.
int get_chimes_4b_order No arguments. Returns the four

body order set by the parameter file.
double get_chimes_max_2b_cutoff No arguments. Returns the two body

maximum outer cutoff set by the pa-
rameter file.

double get_chimes_max_3b_cutoff No arguments. Returns the three
body maximum outer cutoff set by
the parameter file.

double get_chimes_max_4b_cutoff No arguments. Returns the four
body maximum outer cutoff set by
the parameter file.

void chimes_compute_2b_props

Type Description
dou-
ble

Distance between two
atoms, i and j

dou-
ble
ar-
ray

Distance vector compo-
nents for each atom

char*
ar-
ray

Atom types for atoms i
and j

dou-
ble
ar-
ray

Forces for atoms i and
j ([atom index (out of
2)][component index (i.e.
fx=0, fy=1, fz=3)]) (con-
tents updated by function)

dou-
ble
ar-
ray

Stress tensor ([s_xx, s_xy,
s_xz, s_yx, s_yy, s_yz,
s_zx, s_zy, s_zz]) (con-
tents updated by function)

dou-
ble*

Energy (updated by func-
tion)

Update the force, stress tensor, and
energy with the two-atom contribu-
tion.

void chimes_compute_3b_props

Type Description
dou-
ble
ar-
ray

Distances between three
atoms, ij, ik, and jk

dou-
ble
ar-
ray

Distance vector com-
ponents for each atom
[atom][x, y, or z compo-
nent]

char*
ar-
ray

Atom types for atoms i, j
and k

dou-
ble
ar-
ray

Forces for atoms i, j, and
k ([atom index (out of
3)][component index (i.e.
fx=0, fy=1, fz=3)]) (con-
tents updated by function)

dou-
ble
ar-
ray

Stress tensor ([s_xx, s_xy,
s_xz, s_yx, s_yy, s_yz,
s_zx, s_zy, s_zz]) (con-
tents updated by function)

dou-
ble*

Energy (updated by func-
tion)

Update the force, stress tensor, and
energy with the three-atom contribu-
tion.

void chimes_compute_4b_props

Type Description
dou-
ble
ar-
ray

Distances between four
atoms, ij, ik, il, jk, jl, and
kl

dou-
ble
ar-
ray

Distance vector com-
ponents for each atom
[atom][x, y, or z compo-
nent]

char*
ar-
ray

Atom types for atoms i, j,
k and l

dou-
ble
ar-
ray

Forces for atoms i, j, k,
and l ([atom index (out of
4)][component index (i.e.
fx=0, fy=1, fz=3)]) (con-
tents updated by function)

dou-
ble
ar-
ray

Stress tensor ([s_xx, s_xy,
s_xz, s_yx, s_yy, s_yz,
s_zx, s_zy, s_zz]) (con-
tents updated by function)

dou-
ble*

Energy (updated by func-
tion)

Update the force, stress tensor, and
energy with the four-atom contribu-
tion.

void chimes_compute_2b_props_fromf90

Type Description
dou-
ble*

Distance between two
atoms, i and j

dou-
ble
ar-
ray

Distance vector compo-
nents for each atom

char* Type for atom i
char* Type for atom j
dou-
ble
ar-
ray

Forces for atoms i and
j ([atom index (out of
2)][component index (i.e.
fx=0, fy=1, fz=3)]) (con-
tents updated by function)

dou-
ble
ar-
ray

Stress tensor ([s_xx, s_xy,
s_xz, s_yx, s_yy, s_yz,
s_zx, s_zy, s_zz]) (con-
tents updated by function)

dou-
ble*

Energy (updated by func-
tion)

For calls from a Fortran code. Up-
date the force, stress tensor, and en-
ergy with the two-atom contribution.

void chimes_compute_3b_props_fromf90

Type Description
dou-
ble

Distances between three
atoms, ij, ik, and jk

dou-
ble
ar-
ray

Distance vector com-
ponents for each atom
[atom][x, y, or z compo-
nent]

char* Type for atom i
char* Type for atom j
char* Type for atom k
dou-
ble
ar-
ray

Forces for atoms i, j, and
k ([atom index (out of
3)][component index (i.e.
fx=0, fy=1, fz=3)]) (con-
tents updated by function)

dou-
ble
ar-
ray

Stress tensor ([s_xx, s_xy,
s_xz, s_yx, s_yy, s_yz,
s_zx, s_zy, s_zz]) (con-
tents updated by function)

dou-
ble*

Energy (updated by func-
tion)

For calls from a Fortran code. Up-
date the force, stress tensor, and en-
ergy with the three-atom contribu-
tion.

void chimes_compute_4b_props_fromf90

Type Description
dou-
ble

Distances between four
atoms, ij, ik, il, jk, jl, and
kl

dou-
ble
ar-
ray

Distance vector com-
ponents for each atom
[atom][x, y, or z compo-
nent]

char* Type for atom i
char* Type for atom j
char* Type for atom k
char* Type for atom l
dou-
ble
ar-
ray

Forces for atoms i, j, k,
and l ([atom index (out of
4)][component index (i.e.
fx=0, fy=1, fz=3)]) (con-
tents updated by function)

dou-
ble
ar-
ray

Stress tensor ([s_xx, s_xy,
s_xz, s_yx, s_yy, s_yz,
s_zx, s_zy, s_zz]) (con-
tents updated by function)

dou-
ble*

Energy (updated by func-
tion)

For calls from a Fortran code. Up-
date the force, stress tensor, and en-
ergy with the four-atom contribu-
tion.

4.3. The ChIMES Calculator 13

chimes_calculator Documentation, Release 0.0.1

4.3.2 The Fortran API

The Fortran API (chimescalc_F.f90) is located in chimesFF/api. This wrapper enables access to chimesFF func-
tions through the C API and handles other details like differences in array storage order.

Any Fortran code attempting to use the ChIMES Calculator should use chimescalc and at least include the following
operations, in order:

integer(C_int) :: my_rank
call f_set_chimes() ! Instantiate
call f_init_chimes(my_rank) ! Set MPI rank (replace with zero if used in␣
→˓serial code)
call f_chimes_read_params(string2Cstring("my_parameter_file"))

For additional information on compiling, see Implementation Examples.

Note that the ChIMES calculator chimescalc_F API provides users with the following functions:

14 Chapter 4. The ChIMES Calculator

chimes_calculator Documentation, Release 0.0.1

Return Type Name Arguments and Description
none f_chimes_compute_2b_props_fromf90

Type Description
C_doubleDistance between two

atoms, i and j
C_double
ar-
ray

Distance vector compo-
nents for each atom

C_charType for atom i
C_charType for atom j
C_double
ar-
ray

Forces for atoms i and
j ([atom index (out of
2)][component index (i.e.
fx=0, fy=1, fz=3)]) (con-
tents updated by function)

C_double
ar-
ray

Stress tensor ([s_xx, s_xy,
s_xz, s_yx, s_yy, s_yz,
s_zx, s_zy, s_zz]) (con-
tents updated by function)

C_doubleEnergy (updated by func-
tion)

Update the force, stress tensor, and
energy with the two-atom contribu-
tion.

none f_chimes_compute_3b_props_fromf90

Type Description
C_double
ar-
ray

Distances between three
atoms, ij, ik, and jk

C_double
ar-
ray

Distance vector compo-
nents for each atom

C_charType for atom i
C_charType for atom j
C_charType for atom k
C_double
ar-
ray

Forces for atoms i, j, and
k ([atom index (out of
3)][component index (i.e.
fx=0, fy=1, fz=3)]) (con-
tents updated by function)

C_double
ar-
ray

Stress tensor ([s_xx, s_xy,
s_xz, s_yx, s_yy, s_yz,
s_zx, s_zy, s_zz]) (con-
tents updated by function)

C_doubleEnergy (updated by func-
tion)

Update the force, stress tensor, and
energy with the three-atom contribu-
tion.

none f_chimes_compute_4b_props_fromf90

Type Description
C_double
ar-
ray

Distances between four
atoms, ij, ik, il, jk, jl, and

C_double
ar-
ray

Distance vector compo-
nents for each atom

C_charType for atom i
C_charType for atom j
C_charType for atom k
C_charType for atom l
C_double
ar-
ray

Forces for atoms i, j, k,
and l ([atom index (out of
2)][component index (i.e.
fx=0, fy=1, fz=3)]) (con-
tents updated by function)

C_double
ar-
ray

Stress tensor ([s_xx, s_xy,
s_xz, s_yx, s_yy, s_yz,
s_zx, s_zy, s_zz]) (con-
tents updated by function)

C_doubleEnergy (updated by func-
tion)

Update the force, stress tensor, and
energy with the four-atom contribu-
tion.

none f_set_chimes No arguments. Instantiates a pointer
to a chimesFF object.

none f_init_chimes

Type Description
int MPI rank

Set the MPI rank. With the excep-
tion of error messages, the ChIMES
calculator will only print output for
rank 0.

none f_chimes_read_params

Type Description
C_char Parameter file

Read the chimes parameter file.
C_int f_get_chimes_2b_order No arguments. Returns the two body

order set by the parameter file.
C_int f_get_chimes_3b_order No arguments. Returns the three

body order set by the parameter file.
C_int f_get_chimes_4b_order No arguments. Returns the four

body order set by the parameter file.
C_double f_get_chimes_max_2b_cutoff No arguments. Returns the two body

maximum outer cutoff.
C_double f_get_chimes_max_3b_cutoff No arguments. Returns the three

body maximum outer cutoff.
C_double f_get_chimes_max_4b_cutoff No arguments. Returns the four

body maximum outer cutoff.
C_string string2Cstring

Type Description
string Any text

Converts a Fortran string to a
C_string

4.3. The ChIMES Calculator 15

chimes_calculator Documentation, Release 0.0.1

4.3.3 The Python API

The Python API (chimescalc_py*) is located in chimesFF/api. Like the Fortran API, this wrapper enables access
to chimesFF functions through the C API, via ctypes.

Any python code attempting to use the ChIMES Calculator should import chimescalc_py and at least include the
following operations, in order:

chimescalc_py.chimes_wrapper = chimescalc_py.init_chimes_wrapper("chimescalc_
→˓dl.so") # Associate the wrapper with a compiled C API library file
chimescalc_py.set_chimes() # Instantiate
chimescalc_py.init_chimes() # If run with MPI, an integer MPI rank can be␣
→˓passed to this function. By default, assumes rank = 0
chimescalc_py.read_params("my_parameter_file")

For additional information on compiling (i.e. generation of chimescalc_dl.so), see Implementation Examples.

Note that the ChIMES calculator chimescalc_py API provides users with the following functions:

16 Chapter 4. The ChIMES Calculator

chimes_calculator Documentation, Release 0.0.1

Return Type Name Arguments and Description
ctypes init_chimes_wrapper

Type Description
str C-wrapper library name

(i.e. “lib-C_wrapper-
serial_interface.so”)

none set_chimes No arguments. Instantiates a pointer
to a chimesFF object.

none init_chimes

Type Description
int MPI rank (optional pa-

rameter)

Set the MPI rank. With the excep-
tion of error messages, the ChIMES
calculator will only print output for
rank 0.

none read_params

Type Description
str Parameter file

float get_chimes_max_2b_cutoff No arguments. Returns the two body
order set by the parameter file.

float get_chimes_max_2b_cutoff No arguments. Returns the three
body order set by the parameter file.

float get_chimes_max_2b_cutoff No arguments. Returns the four
body order set by the parameter file.

int get_chimes_2b_order No arguments. Returns the two body
maximum outer cutoff.

int get_chimes_3b_order No arguments. Returns the three
body maximum outer cutoff.

int get_chimes_4b_order No arguments. Returns the four
body maximum outer cutoff.

none chimes_compute_2b_props

Type Description
float Distances between atoms i

and j
float
list

Distance vector compo-
nents for each atom

str
list

Types for atom i and j

float
list

Forces for atoms i, and
j ([atom index (out of
2)][component index (i.e.
fx=0, fy=1, fz=3)]) (con-
tents updated by function)

float
list

Stress tensor ([s_xx, s_xy,
s_xz, s_yx, s_yy, s_yz,
s_zx, s_zy, s_zz]) (con-
tents updated by function)

float Energy (updated by func-
tion)

Update the force, stress tensor, and
energy with the two-atom contribu-
tion.

none chimes_compute_3b_props

Type Description
float
list

Distances between three
atoms, ij, ik, and jk

float
list

Distance vector compo-
nents for each atom

str
list

Types for atom i, j, and k

float
list

Forces for atoms i, j, and
k ([atom index (out of
3)][component index (i.e.
fx=0, fy=1, fz=3)]) (con-
tents updated by function)

float
list

Stress tensor ([s_xx, s_xy,
s_xz, s_yx, s_yy, s_yz,
s_zx, s_zy, s_zz]) (con-
tents updated by function)

float Energy (updated by func-
tion)

Update the force, stress tensor, and
energy with the three-atom contribu-
tion.

none chimes_compute_4b_props
Type Description
float
list

Distances
between four
atoms, ij, ik,
il, jk, jl, and
kl

float
list

Distance
vector com-
ponents for
each atom

str
list

Types for
atom i, j, k,
and l

float
list

Forces for
atoms i, j, k,
and l ([atom
index (out of
4)][compo-
nent index
(i.e. fx=0,
fy=1, fz=3)])
(contents
updated by
function)

float
list

Stress tensor
([s_xx, s_xy,
s_xz, s_yx,
s_yy, s_yz,
s_zx, s_zy,
s_zz]) (con-
tents updated
by function)

float Energy (up-
dated by
function)

Update the force, stress tensor, and
energy with the four-atom contribu-
tion.

4.3. The ChIMES Calculator 17

chimes_calculator Documentation, Release 0.0.1

4.3.4 Implementation Examples

The following codes demonstrates how chimesFF.{h,cpp} can be used to obtain the overall stress tensor, energy,
and per-atom forces for a given system configuration using C, C++ Fortran, and Python. See the main.* files in each
corresponding subdirectory of chimesFF/examples for further implementation details. Note that sample system
configurations (i.e. *xyz files) and parameter files can be found in serial_interface/test/configurations and
serial_interface/test/force_fields, respectively. For user generated tests, note that *.xyz files must provide
lattice vectors in the comment line, e.g. lx 0.0 0.0 0.0 ly 0.0 0.0 0.0 lz. Click here for an overview of ChIMES units.

Note: All implementation examples are intended to be run on Unix-based systems (e.g. Linux, OSX).

Warning: These codes are for demonstrative purposes only and come with no guarantees.

Note: All example executables can be compiled at once in ./build with CMake, via ./install.sh from the
chimes_calculator base directory, and similarly uninstalled via ./uninstall.sh. However, the examples below
compile via the user-generated Makefiles located in each examples subdirectory, for demonstrative purposes.

• C Example: The main function of this example includes the C API, chimescalc_C.{h,cpp}, which creates a
global static pointer to a chimesFF object. The chimesFF pointer object is set up, i.e. by set_chimes(), and
used for access to chimesFF member functions, etc.

– Navigate to chimesFF/examples/c

– Compile with: make all

– Test with: ./chimescalc-test_direct-C <parameter file> <xyz file>

– Additional notes:

∗ *.xyz files must not contain any information beyond atom type and x-, y-, and z- coordinate on coor-
dinate lines.

∗ This implementation does NOT use ghost atoms/layering thus the input system MUST have box lengths
greater than two times the largest outer cutoff, or results will not be correct.

• C++ Example: The main function of this example creates an instance of serial_chimes_interface (i.e. a
class inheriting chimesFF, which computes energy, per-atom forces, and stress tensor for an overall system). For
additional details, see The ChIMES Calculator Serial Interface

– Navigate to chimesFF/examples/cpp

– Compile with: make all

– Test with: ./chimescalc <parameter file> <xyz file>

• Fortran Example: Similar to the C example, this main function establishes a pointer to a chimesFF object via
f_set_chimes(). The f_set_chimes() function call is defined in chimescalc_F.f90, a wrapper for the
C API chimescalc_C.cpp (i.e which facilitates C-style access to chimesFF member functions, etc). Actual
linking is achieved at compilation. See the Makefile for details.

– Navigate to chimesFF/examples/fortran

– Compile with: make all

18 Chapter 4. The ChIMES Calculator

chimes_calculator Documentation, Release 0.0.1

– Test with: ./chimescalc-test_direct-F <parameter file> <xyz file>

– Additional notes:

∗ *.xyz files must not contain any information beyond atom type and x-, y-, and z- coordinate on coor-
dinate lines.

∗ This implementation does NOT use ghost atoms/layering thus the input system MUST have box lengths
greater than two times the largest outer cutoff, or results will not be correct.

• Python Example: This example accesses chimesFF functions through chimescalc_py.py, a ctypes-based
python API for access to the C API functions (i.e. through chimescalc_C.cpp). Once chimescalc_py.py is
imported, it is associated with a compiled C API library file, i.e. chimescalc_dl.so and can be used to access
chimesFF member functions.

– Navigate to chimesFF/examples/python

– Compile chimescalc_dl.so with: make all

– Test with: python main.py <parameter file> <coordinate file>

– Additional notes:

∗ Requires chimescalc_dl.so in the same directory, which is generated via make all

∗ Expects to be run with Python version 3.X

Warning: This Python implementation example does NOT use ghost atoms/layering thus the input system MUST
have box lengths greater than two times the largest outer cutoff, or results will not be correct.

4.3. The ChIMES Calculator 19

chimes_calculator Documentation, Release 0.0.1

20 Chapter 4. The ChIMES Calculator

CHAPTER

FIVE

THE CHIMES CALCULATOR SERIAL INTERFACE

5.1 Overview

The ChIMES calculator serial interface provides an easier means of evaluating ChIMES interactions for a given system.
In constrast to the ChIMES calculator (i.e. chimesFF), which takes information on individual atom clusters and returns
the cluster energy, stress tensor, via compute_xB functions, the serial interface (i.e. serial_chimes_interface)
takes overall system information and returns overall system energy, stress tensor, and forces. Though far less flexible
than direct use of chimesFF, serial_chimes_interface allows users to leverage ChIMES with much less coding.
For further details on chimesFF, see The ChIMES Calculator. For a complete set of ChIMES references, see Citing
ChIMES. Note that this functionality is primarily intended for instructive purposes, and is not recommended for large
scale simulations.

5.2 The ChIMES Calculator Serial Interface

The ChIMES calculator serial interface source files are located in serial_interface/src/. To use
in a C++ code, simply #include "serial_chimes_interface.h" in the target code and instantiate a
serial_chimes_interface object. As described in greater detail below, serial_chimes_interface objects take
information on the overall system and provide the corresponding ChIMES energy, stress tensor, and forces. Any such
code must initialize the calculation the with following operations, in order:

int my_rank = 0;
// Instantiate
serial_chimes_interface chimes;
// Specify the parameter files and set the MPI rank (replace with zero if␣
→˓used in serial code)
chimes.init_chimesFF("my_parameter_file", my_rank);

Warning:

For small simulation cells (e.g., a single atom in a face-centered cubic unit cell), the ChIMES calculator
must be instantiated via serial_chimes_interface chimes(true). This allows for automatic
replication in situations where the ChIMES outer cutoff is greater than one half of the smallest supercell
length. Please note that use of extra-small simulation cells is ill-advised for aything except crystalline
systems and should be used with caution.

Developer note: To recover behavior of the research code, instantiate with: serial_chimes_interface
chimes(false).

21

chimes_calculator Documentation, Release 0.0.1

Please see the following example of interfacing a C++ code with the ChIMES calculator: serial_interface/
examples/cpp/main.cpp. Note that the ChIMES calculator serial_chimes_interface class provides users with
the following functions:

Return Type Name Arguments and Description
void init_chimesFF

Type Description
string Parameter file
int MPI rank

Instantiates
serial_chimes_interface
object, sets rank, reads parameter
file. With the exception of error
messages, the ChIMES calculator
will only print output for rank 0.

void calculate

Type Description
vec-
tor<double>

Vector of x-coordinates
for system atoms

vec-
tor<double>

Vector of y-coordinates
for system atoms

vec-
tor<double>

Vector of z-coordinates
for system atoms

vec-
tor<double>

System cell a lattice
vector

vec-
tor<double>

System cell b lattice
vector

vec-
tor<double>

System cell c lattice
vector

vec-
tor<string>

Vector of atom types for
system atoms

dou-
ble

Overall system energy
(updated by function)

vec-
tor<vector<double>
>

Vector of forces for sys-
tem atoms (updated by
function); ([atom in-
dex][fx, fy, fz])

vec-
tor<double>

System stress tensor
(updated by function);
([s_xx, s_xy, s_xz,
s_yx, s_yy, s_yz, s_zx,
s_zy, s_zz])

Takes system coordinates and cell
lattice vectors, computes corre-
sponding ChIMES energy, stress
tensor, and system forces.

22 Chapter 5. The ChIMES Calculator Serial Interface

chimes_calculator Documentation, Release 0.0.1

5.2.1 The C API

The C API (chimescalc_serial_C*) is located in serial_interface/api. This wrapper provides C style name
mangling and creates a set of C-style wrapper functions. The latter are needed for compatibility with std::vector
which is heavily used in serial_chimes_interface and not supported in most other languages. Any C code at-
tempting to use the ChIMES calculator serial interface should #include "chimescalc_serial_C.h" and initialize
calculations with the following operations, in order:

int my_rank = 0;
set_chimes_serial(); // Instantiate; as for the C++ API (see warning␣
→˓message), can pass 0/1 for false/true for small cells
init_chimes_serial("my_parameter_file", my_rank); // Set MPI rank (replace␣
→˓with zero if used in serial code)

Please see the following example of interfacing a C code with the ChIMES calculator: serial_interface/
examples/c/main.c. For additional information on compiling, see Implementation Examples.

Note that the ChIMES calculator serial interface chimescalc_serial_C API provides users with the following func-
tions:

5.2. The ChIMES Calculator Serial Interface 23

chimes_calculator Documentation, Release 0.0.1

Return Type Name Arguments and Description
void set_chimes_serial Creates a pointer to a

serial_chimes_interface
object.

Type Description
int Boolean: Allow for small

cell replication? (0/1 for
false/true); default = true

void init_chimes_serial

Type Description
string Parameter file
int MPI rank

Sets rank and reads the
parameter file to the
serial_chimes_interface
object. With the exception of error
messages, the ChIMES calculator
will only print output for rank 0.

void calculate_chimes

Type Description
int number of atoms in sys-

tem
dou-
ble
ar-
ray

Vector of x-coordinates
for system atoms

dou-
ble
ar-
ray

Vector of y-coordinates
for system atoms

dou-
ble
ar-
ray

Vector of z-coordinates
for system atoms

char
ar-
ray

System cell a lattice vector

dou-
ble
ar-
ray

System cell b lattice vec-
tor

dou-
ble
ar-
ray

System cell c lattice vector

dou-
ble
ar-
ray

Vector of atom types for
system atoms

dou-
ble*

Overall system energy
(updated by function)

dou-
ble
ar-
ray

Vector of forces for
system atoms (updated
by function); ([atom
index][fx, fy, fz])

dou-
ble
ar-
ray

System stress tensor
(updated by function);
([s_xx, s_xy, s_xz, s_yx,
s_yy, s_yz, s_zx, s_zy,
s_zz])

Takes system coordinates and cell
lattice vectors, computes corre-
sponding ChIMES energy, stress
tensor, and system forces.

24 Chapter 5. The ChIMES Calculator Serial Interface

chimes_calculator Documentation, Release 0.0.1

5.2.2 The Fortran90 API

The Fortran90 API (chimescalc_serial_F.f90) is located in serial_interface/api. This wrapper enables
access to serial_chimes_interface functions through the C API and handles other details like differences in array
storage order.

Any Fortran90 code attempting to use the ChIMES Calculator should use chimescalc_serial and at least include
the following operations, in order:

integer(C_int) :: my_rank
! Instantiate; as for the C++ API (see warning message), can pass 0/1 for␣
→˓false/true for small cells
call f_set_chimes()
! Specify the parameter files and set the MPI rank (replace with zero if used␣
→˓in serial code)
call f_init_chimes(string2Cstring("my_parameter_file"), my_rank)

Please see the following example of interfacing a Fortran90 code with the ChIMES calculator: serial_interface/
examples/fortran/main.F90. For additional information on compiling, see Implementation Examples.

Note that the ChIMES calculator serial interface chimescalc_serial_F API provides users with the following func-
tions:

5.2. The ChIMES Calculator Serial Interface 25

chimes_calculator Documentation, Release 0.0.1

Return Type Name Arguments and Description
none f_set_chimes Creates a pointer to a

serial_chimes_interface
object.

Type Description
C_int Boolean: Allow replica-

tion? (0/1 for false/true);
default = true

none f_init_chimes

Type Description
C_char Parameter file
C_int MPI rank

Sets rank and reads the
parameter file to the
serial_chimes_interface
object. With the exception of error
messages, the ChIMES calculator
will only print output for rank 0.

void f_calculate_chimes

Type Description
C_int number of atoms in sys-

tem
C_double
ar-
ray

Vector of x-coordinates
for system atoms

C_double
ar-
ray

Vector of y-coordinates
for system atoms

C_double
ar-
ray

Vector of z-coordinates
for system atoms

C_char
ar-
ray

System cell a lattice vec-
tor

C_double
ar-
ray

System cell b lattice vec-
tor

C_double
ar-
ray

System cell c lattice vec-
tor

C_double
ar-
ray

Vector of atom types for
system atoms

C_double*Overall system energy
(updated by function)

C_double
ar-
ray

Vector of forces for
system atoms (updated
by function); ([atom
index][fx, fy, fz])

C_double
ar-
ray

System stress tensor
(updated by function);
([s_xx, s_xy, s_xz, s_yx,
s_yy, s_yz, s_zx, s_zy,
s_zz])

Takes system coordinates and cell
lattice vectors, computes corre-
sponding ChIMES energy, stress
tensor, and system forces.

C_string string2Cstring

Type Description
string Any text

Converts a Fortran string to a
C_string

26 Chapter 5. The ChIMES Calculator Serial Interface

chimes_calculator Documentation, Release 0.0.1

5.2.3 The Fortran2008 API

The Fortran2008 API (chimescalc_serial_F08.f90) is located in serial_interface/api. This wrapper enables
access to serial_chimes_interface functions through the C API and handles other details like differences in array
storage order.

Any Fortran2008 code attempting to use the ChIMES Calculator should use chimescalc_serial08, only :
ChimesCalc, ChimesCalc_init and at least include the following operations, in order:

! declare ChIMES object
type(ChimesCalc) :: chimes
! Initialize ChIMES calculator
! Note: ``param_file`` is the user-defined ChIMES parameter file, ``my_rank`` is␣
→˓the MPI process rank (zero for a serial process), and ``small`` is set to 0/1␣
→˓for false/true for small cells
call ChimesCalc_init(chimes, trim(param_file), my_rank, small)
! Set atom typesi for C++ interface, stored in the array atom_types in this␣
→˓example.
call chimes%set_atom_types(atom_types)
! Get ChIMES contributions
call chimes%calculate(coords, latvecs, energy, forces, stress)

Please see the following example of interfacing a Fortran2008 code with the ChIMES calculator: serial_interface/
examples/fortran08/main.F90.For additional information on compiling, see Implementation Examples.

Note that the ChIMES calculator serial interface chimescalc_serial_F08 API provides users with the following
functions:

5.2. The ChIMES Calculator Serial Interface 27

chimes_calculator Documentation, Release 0.0.1

Code Type Name Arguments and Description
subroutine ChimesCalc_init Creates a pointer to a

serial_chimes_interface
object through function calls to the
Fortran90 API module.

Type Description
ChimesCalcInitialized chimes calcu-

lator instance on exit
char-
ac-
ter(*)

Name of the parameter
file to use for the initial-
ization

inte-
ger

MPI process rank

inte-
ger

Set to 0/1 for false/true
for small cells

subroutine <ChimesCalc>%set_atom_types Converts Fortran char array to
C/C++ string array.

Type Description
char-
ac-
ter(*)

Fortran array of atom
types. Subroutine con-
verts to C/C++ string ar-
rays.

subroutine <ChimesCalc>%calculate Performs ChIMES calculation based
on simulation cell inputs

Type Description
dou-
ble
pre-
ci-
sion

2D array of atomic co-
ordinates with shape of
(3,n_atom)

dou-
ble
pre-
ci-
sion

Lattice vectors. Shape:
[3, 3], first index runs
over x,y,z, second over
lattice vectors.

dou-
ble
pre-
ci-
sion

Variable which should
be increased by the
ChIMES energy.

dou-
ble
pre-
ci-
sion

Forces, which ChIMES
contribution should be
added to. Shape: [3,
nr_of_atoms].

dou-
ble
pre-
ci-
sion

Stress tensor, which the
ChIMES contribution
should be added to.
Shape: [3, 3].

28 Chapter 5. The ChIMES Calculator Serial Interface

chimes_calculator Documentation, Release 0.0.1

5.2.4 The Python API

The Python API (chimescalc_serial_py.py) is located in serial_interface/api. Like the Fortran API, this
wrapper enables access to serial_chimes_interface functions through the C API, via ctypes.

Any python code attempting to use the ChIMES Calculator should import chimescalc_serial_py and at least
include the following operations, in order:

Associate the wrapper with a compiled C API library file
chimescalc_serial_py.chimes_wrapper = chimescalc_serial_py.init_chimes_wrapper(
→˓"libchimescalc_dl.so")
Instantiate; as for the C++ API (see warning message), can pass 0/1 for␣
→˓false/true
chimescalc_serial_py.set_chimes()
Read the parameter file, set MPI rank to 0 (i.e. no MPI used)
chimescalc_serial_py.init_chimes("my_parameter_file", 0)

For additional information on compiling (i.e. generation of lib-C_wrapper-serial_interface.so), see Imple-
mentation Examples.

Note that the ChIMES calculator serial interface chimescalc_serial_py API provides users with the following
functions:

5.2. The ChIMES Calculator Serial Interface 29

chimes_calculator Documentation, Release 0.0.1

Return Type Name Arguments and Description
See description init_chimes_wrapper

Type Description
string Library name

Associate ctypes.CDLL (i.e. the
return type) with a the compiled
ChIMES calculator serial interface
C-library.

void set_chimes Creates a pointer to a
serial_chimes_interface
object.

Type Description
bool Allow replication? ; de-

fault = true

void init_chimes

Type Description
string Parameter file
int MPI rank

Sets rank and reads the
parameter file to the
serial_chimes_interface
object. With the exception of error
messages, the ChIMES calculator
will only print output for rank 0.

See description calculate_chimes

Type
(in-
put)

Description

int number of atoms in sys-
tem

float
list

Vector of x-coordinates
for system atoms

float
list

Vector of y-coordinates
for system atoms

float
list

Vector of z-coordinates
for system atoms

str
list

System cell a lattice vec-
tor

float
list

System cell b lattice vec-
tor

float
list

System cell c lattice vec-
tor

float
list

Vector of atom types for
system atoms

float Overall system energy
float
list

Vector of forces for
system atoms ([atom
index][fx, fy, fz])

float
list

System stress tensor
([s_xx, s_xy, s_xz, s_yx,
s_yy, s_yz, s_zx, s_zy,
s_zz])

Takes system coordinates and cell
lattice vectors, computes corre-
sponding ChIMES energy, stress
tensor, and system forces.

Type
(re-
turn)

Description

float
list

List of x-force compo-
nents for system atoms

float
list

List of y-force compo-
nents for system atoms

float
list

List of z-force compo-
nents for system atoms

float
list

System stress tensor
[s_xx, s_xy, s_xz, s_yx,
s_yy, s_yz, s_zx, s_zy,
s_zz]

float System energy

30 Chapter 5. The ChIMES Calculator Serial Interface

chimes_calculator Documentation, Release 0.0.1

5.2.5 Implementation Examples

The following codes demonstrates how serial_chimes_interface.{h,cpp} can be used to obtain the overall stress
tensor, energy, and per-atom forces for a given system configuration using C, C++ Fortran, and Python. See the main.*
files in each corresponding subdirectory of serial_interface/examples for further implementation details. Note
that sample system configurations (i.e. *xyz files) and parameter files can be found in serial_interface/test/
configurations and serial_interface/test/force_fields, respectively. For user generated tests, note that
*.xyz files must provide lattice vectors in the comment line, e.g. lx 0.0 0.0 0.0 ly 0.0 0.0 0.0 lz. Click here for an
overview of ChIMES units.

Note: All implementation examples are intended to be run on Unix-based systems (e.g. Linux, OSX).

Warning: These codes are for demonstrative purposes only and come with no guarantees.

Note: All example executables can be compiled at once in ./build with CMake, via ./install.sh from the
chimes_calculator base directory, and similarly uninstalled via ./uninstall.sh. However, the examples below
compile via the user-generated Makefiles located in each examples subdirectory, for demonstrative purposes.

• C Example: The main function of this example includes the C API, chimescalc_serial_C.{h,cpp}, which
creates a global static pointer to a serial_chimes_interface object. The serial_chimes_interface
pointer object is set up, i.e. by set_chimes_serial(), and used for access to serial_chimes_interface
member functions, etc.

– Navigate to serial_interface/examples/c

– Compile with: make all

– Test with: ./chimescalc-test_serial-C <parameter file> <xyz file>

• C++ Example: The main function of this example creates an instance of serial_chimes_interface (i.e. a
class inheriting chimesFF, which computes energy, per-atom forces, and stress tensor for an overall system). For
additional details, see The ChIMES Calculator

– Navigate to serial_interface/examples/cpp

– Compile with: make all

– Test with: ./chimescalc <parameter file> <xyz file>

• Fortran90 Example: Similar to the C example, this main function establishes a pointer to a
serial_chimes_interface object via f_set_chimes(). The f_set_chimes() function call is defined in
chimescalc_serial_F.F90, a wrapper for the C API chimescalc_serial_C.cpp (i.e which facilitates C-
style access to serial_chimes_interface member functions, etc). Actual linking is achieved at compilation.
See the Makefile for details.

– Navigate to serial_interface/examples/fortran

– Compile with: make all

– Test with: ./chimescalc-test_serial-F <parameter file> <xyz file>

– Additional notes:

5.2. The ChIMES Calculator Serial Interface 31

chimes_calculator Documentation, Release 0.0.1

• Fortran2008 Example: Similarly, this main function establishes a pointer to a serial_chimes_interface
object via calls to ChimesCalc_init() and subroutine calls within the ChimesCalc class, defined in
chimescalc_serial_F08.f90. Subroutines called from the Fortran2008 API act as an interface for the wrap-
per functions establied in the Fortran90 API. Actual linking is achieved at compilation. See the Makefile for
details.

– Navigate to serial_interface/examples/fortran08

– Compile with: make all

– Test with: ./chimescalc-test_serial-F08 <parameter file> <xyz file>

– Additional notes:

• Python Example: This example accesses serial_chimes_interface functions through
chimescalc_serial_py.py, a ctypes-based python API for access to the C API functions (i.e. through
chimescalc_serial_C.cpp). Once chimescalc_serial_py.py is imported, it is associated with a
compiled C API library file, i.e. lib-C_wrapper-serial_interface.so and can be used to access
serial_chimes_interface member functions.

– Navigate to serial_interface/examples/python

– Compile libchimescalc-serial_dl.so with: make all

– Rename: cp libchimescalc-serial_dl.so libchimescalc_dl.so

– Test with: python main.py <parameter file> <coordinate file>

32 Chapter 5. The ChIMES Calculator Serial Interface

CHAPTER

SIX

SUPPORT FOR LINKING WITH EXTERNAL CODES

6.1 Using the ChIMES Calculator with LAMMPS

We are currently working toward ChIMES calculator implementation in LAMMPS as a USER package. In the interim,
the following provides a guide to implementing the ChIMES calculator as a LAMMPS pairstyle.

6.1.1 Quick start

Provided a system with a C++11-compatible compiler and an MPI compatible compiler are available, LAMMPS can be
downloaded, installed, linked to ChIMES, and compiled all at once by navigating to etc/lmp, adding Intel compilers
to your path and executing ./install.sh. Once complete, the installation can be tested by navigating to etc/lmp/
tests and running the example via ../exe/lmp_mpi_chimes -i in.lammps.

As with installation of the ChIMES Calculator itself, if you are on a HPC using module files, you may need to load
them first. Module files are already configured for a handful of HPC - inspect the contents of modfiles to see if yours
is listed. If it is (e.g., LLNL-LC.mod), execute export hosttype=LLNL-LC; ./install.sh to install. Otherwise,
load the appropriate modules by hand before running the install script.

Note that Intel oneapi compilers (which are now free) can be used to properly configure your enviroment for all Intel
capabilities (e.g., icc, mpiicpc, mkl, etc.) - simply locate and execute the setvars.sh script within your Intel installation.

6.1.2 Detailed Compilation Overview

Note: This example assumes users have downloaded the 29 Oct 2020 release of LAMMPS (stable version as of
10/29/20), which can be downloaded here.

To integrate the ChIMES calculator in LAMMPS, locate the following files, and place them in the following destination
among the LAMMPS source code:

33

https://lammps.sandia.gov
https://lammps.sandia.gov/download.html

chimes_calculator Documentation, Release 0.0.1

File Location Destination Description
chimesFF.{h,cpp} chimesFF/

src
src/
MANYBODY

ChIMES calculator files

pair_chimes.{h,
cpp}

etc/lmp/
src

src/
MANYBODY

ChIMES pair_style definition files

pair.{h,cpp} etc/lmp/
etc

src Updated LAMMPS pair files (new ev_tally definition
added)

Makefile.
mpi_chimes

etc/lmp/
etc

src/MAKE Makefile for compiling with ChIMES support

Following, compile from the base LAMMPS directory with:

make yes-manybody
make mpi_chimes

Note that a successful compilation should produce an executable named lmp_mpi_chimes.

Tip: If you are using an intel compiler, either delete the pair_list.* files that appear in the src folder following
the make yes-manybody command, or add -restrict to CCFLAGS in MAKE/Makefile.mpi_chimes. Note that the
presently provided Makefile.mpi_chimes utilizes the latter approach.

6.1.3 Running

To run a simulation using ChIMES parameters, a block like the following is needed in the main LAMMPS input file
(i.e. in.lammps):

pair_style chimesFF
pair_coeff * * some_standard_chimes_parameter_file.txt

Note that the following must also be set in the main LAMMPS input file, to use ChIMES:

units real
newton on
atom_style atomic
atom_modify sort 0 0.0

Warning:

1. Implementation assumes outer cutoffs for (n+1)-body interactions are always ≤ those for n-body interactions

2. This capability is still under testing - please let us know if you observe strange behavior

3. Assumes user wants single-atom energies to be added to the system energy. If you don’t want to, zero the
energy offsets in the parameter file

34 Chapter 6. Support for Linking with External Codes

https://groups.google.com/g/chimes_software

CHAPTER

SEVEN

CHIMES PARAMETER FILES

ChIMES parameter files are stored in serial_interface/tests/force_fields. A complete list of available force
fields and corresponding references can be found on the Citing ChIMES page. These parameter files come with no
guarantees and should only be used for system compositions and thermodynamic ranges indicated at the top of each
file. If you are interested in developing a ChIMES model for a new material or range of conditions, please contact us
via our Google group.

35

https://groups.google.com/g/chimes_software

chimes_calculator Documentation, Release 0.0.1

36 Chapter 7. ChIMES Parameter Files

CHAPTER

EIGHT

CHIMES UNITS

ChIMES uses the following base units:

Property Unit
Distance Angstroms (“Ang”)
Energy kcal mol −1

Stress kcal mol −1 Ang −3

Force kcal mol −1 Ang −1

37

chimes_calculator Documentation, Release 0.0.1

38 Chapter 8. ChIMES Units

CHAPTER

NINE

CHIMES CALCULATOR UTILITIES

9.1 The PES Generator

9.1.1 Input

A utility for generating ChIMES potential energy surface scans for n-body clusters is available in utils/
pes_generator. To use this utility, create a file name config.py in the desired working directory, structured as
follows:

CHMS_REPO = "/path/to/your/chimes_calculator/repository/"

PARAM_FILE = "/path/to/your/chimes_calculator/repository/serial_interface/tests/force_
→˓fields/test_params.CHON.txt"

PAIRTYPES = [0, 3, 5] # Pair type index for scans, i.e. number after "PAIRTYPE␣
→˓PARAMS:" in parameter file
PAIRSTART = [1.0, 1.0, 1.0] # Smallest distance for scan
PAIRSTOP = [4.0, 4.0, 4.0] # Largest distance for scan
PAIRSTEP = [0.01, 0.01, 0.01] # Step size for scan

TRIPTYPES = [1, 4] # Triplet type index for scans, i.e. number after "TRIPLETTYPE␣
→˓PARAMS:" in parameter file
TRIPSTART = [1.0, 1.0] # Smallest distance for scan
TRIPSTOP = [4.0, 4.0] # Largest distance for scan
TRIPSTEP = [0.10, 0.10] # Step size for scan

The example parameter file doesn't contain four body interactions, so the following is␣
→˓not needed.
If four body scans are desired, keep in mind a small step size will take a long time␣
→˓to run
Start with something very large to get a handle on run time, and modify from there
#
#QUADTYPES = [7] # Triplet type index for scans, i.e. number after "TRIPLETTYPE␣
→˓PARAMS:" in parameter file
#QUADSTART = [1.0] # Smallest distance for scan
#QUADSTOP = [4.0] # Largest distance for scan
#QUADSTEP = [1.00] # Step size for scan

Variables CHMS_REPO and PARAM_FILE specify the chimes_calculator repository location, and path to the ChIMES
parameter of file. Note that paths should be provided in their absolute form. Following these variables, three sets of
options are provided. Focusing on options beginning with PAIR, one must provide the following:

39

chimes_calculator Documentation, Release 0.0.1

• A list of pair type indices for which scans should be generated

– Indices should correspond to values following PAIRTYPE PARAMS: in the target parameter file

• A list of the minimum pair distance for each pair type to consider during the scan

• A list of the maximum pair distance for each pair type to consider during the scan

• A scan step size

All input and output distances are in Angstroms, and all energies are provided in kcal/mol. Additionally, note that
the penalty function will be included in scan results unless PAIRSTART is greater than the sum of the pair interaction
inner cutoff and the penalty kick-in distance, or if the user has set PAIR CHEBYSHEV PENALTY SCALING: to zero in
the parameter file. Similar variables must be set to specify desired 3- and 4-body scans. Note that empty lists can be
provided if no scan is desired.

9.1.2 Output

All n-body scans will produce output scan files named like chimes_scan_<n>b.type_<index>.dat, where <n> is
the bodiedness, and <index> is the PAIRTYPES, TRIPTYPES, or QUADTYPES index. Many-body scans will produce
additional files named like chimes_scan_2+3b.type_<index>.dat or chimes_scan_2+3+4b.type_<index>.
dat, which include contributions from lower-bodied interactions as well.

The first line in each output file provides a comment (prepended by a #) starting and stopping distances followed by
the scan step size. Following, each line provides the ij (and if appropriate, ik, il, jk, jl, and kl distances, respectively)
and the corresponding cluster energy. For example, consider the test_params.CHON.txt parameter file provided in
serial_interface/tests/force_fields/, which contains the following 3-body interaction:

TRIPLETTYPE PARAMS:
INDEX: 5 ATOMS: C H O
PAIRS: CH CO HO UNIQUE: 54 TOTAL: 54
index | powers | equiv index | param index | parameter

--
0 0 1 1 0 0 6.500656496400314
1 0 1 2 1 1 3.7493801790331345
2 0 1 3 2 2 0.0
3 0 2 1 3 3 -4.7147262741975711
4 0 2 2 4 4 -2.0557295465375991
5 0 2 3 5 5 -1.1723283559758126

In the above example, TRIPTYPES is 5, corresponding to i, j, and k atoms of type C, H, and O, respectively. Thus, lines
in the corresponding resulting 3-body scan file would give the ij (C-H), ik (C-O), and jk (H-O) distances, followed by
the corresponding cluster energy.

9.1.3 Visualizing

Two-body scans can be immediately be plotted by most software (e.g. matplotlib, xmgrace, etc.), however additional
considerations are needed to plot the > 3 dimensional 3- and/or 4-body scans. Three body scans can visualized in slices.
An additional utility is provided in utils/pes_generator (i.e. gnuplotify), which can be used to extract these slices in
a gnuplot splot-friendly format. To use this script, the user must specify a 3-body scan file and a ij distance at which to
make the slice. Note that the ij distance must be one listed in the 3-body scan file. For the test_params.CHON.txt
and config.py example above, this can be achieved with:

python3.X gnuplotlify.py chimes_scan_2+3b.type_0.dat 2.5

40 Chapter 9. ChIMES Calculator Utilities

chimes_calculator Documentation, Release 0.0.1

This command will produce a file named like chimes_scan_2+3b.type_0.dat.gnuplot.2.5 that can be plotted
in gnuplot via:

splot 'chimes_scan_2+3b.type_0.dat.gnuplot.2.5' u 1:2:3 w pm3d

9.1. The PES Generator 41

chimes_calculator Documentation, Release 0.0.1

42 Chapter 9. ChIMES Calculator Utilities

CHAPTER

TEN

CITING CHIMES

• Reference Key for ChIMES Methods

• Reference Key for ChIMES Parameter Sets

• Reference Key Definitions

10.1 Reference Key for Methods/Applications

Key definitions are given below.

Method Reference Key
2+3-body ChIMES

1. Carbon-1

ChIMES+DFTB
1. PuH-DFTB
2. DNTF-DFTB
3. TiH-DFTB
4. QMD-DFTB

Iterative Refinement
1. CO-1

Carbon Condensation
1. CO-1

2+3+4-body ChIMES
1. CO-2

Distributed LASSO
1. CO-2

Active Learning
1. CO-2

ChIMES+MSST
1. HN-1
2. DNTF-DFTB

43

chimes_calculator Documentation, Release 0.0.1

10.2 Reference Key for Parameter Sets

Parameter set and key name are interchangeable. Key definitions are given below.

KEY Material Bodied-
ness

T (K)/ 𝜌 (gcc)
Range

Comments

Carbon-1 Molten Carbon 2 5000/2.43 N/A
Carbon-1 Molten Carbon 2 5000/2.43 N/A
Carbon-1 Molten Carbon 2+3 5000/2.43 N/A
Carbon-1 Molten Carbon 2+3 6000/2.25-3.00 N/A
Water-1 Water 2+3 298/1.00 N/A
PuH-
DFTB

Pu/H 2+3 0-300/N/A DFTB 𝐸rep

CO-1 Carbon Monoxide (1:1) 2+3 6500-9350/2.5 N/A
CO-2 Carbon Monoxide (1:1) 2+3+4 2400/1.79 N/A
HN-1 Hydrazoic Acid H/N 2+3+4 300-4500/1-2 N/A
DNTF-
DFTB

3,4-bis(4-nitrofurazan-3-
yl)furoxan

2+3 300-9000/1.86-
3.4

DFTB correction, Not applicable to other
atom type ratios

TiH-
DFTB

Ti/H 2+3 N/A/5.5 DFTB 𝐸rep

QMD-
DFTB

C/N/O/H (based on QM
database)

2+3 0/ambient DFTB correction

10.3 Reference Key Definitions

Corresponding authors are indicated with an asterisk (*).

44 Chapter 10. Citing ChIMES

chimes_calculator Documentation, Release 0.0.1

Key Link Definition
Carbon-1 (link) R.K. Lindsey*, L.E. Fried, N. Gold-

man, J. Chem. Theory Comput., 13
6222 (2017).

PuH-DFTB (link)
N. Goldman*, B. Aradi, R.K.

Lindsey, L.E. Fried, J. Chem.
Theory Comput. 14 2652
(2018).

Water-1 (link) R.K. Lindsey*, L.E. Fried, N. Gold-
man, J. Chem. Theory Comput. 15
436 (2019).

CO-1 (link) R.K. Lindsey*, N. Goldman, L.E.
Fried, S. Bastea, J. Chem. Phys. 153
054103 (2020).

CO-2 (link) R.K. Lindsey*, L.E. Fried, N. Gold-
man, S. Bastea, J. Chem. Phys. 153
134117 (2020).

COND-1 (link) M.R. Armstrong*, R.K. Lindsey*,
N. Goldman, M.H. Nielsen, E.
Stavrou, L.E. Fried, J.M. Zaug, S.
Bastea*, Nat, Commun. 11 353
(2020).

HN-1 (link)
H. Pham*, R.K. Lindsey, L.E.

Fried, N. Goldman, J. Chem.
Phys. 153 224102 (2020).

DNTF-DFTB (link) R.K. Lindsey*, S. Bastea*, N. Gold-
man, L. Fried, J. Chem. Phys. 154
164115 (2021).

TiH-DFTB (link)
N. Goldman*, K. Kweon, R.K.

Lindsey, L.E. Fried, T.W.
Heo, B. Sadigh, P. Soderlind,
A. Landa, A. Perron, J. Jef-
fries, B. Wood, J. Chem. The-
ory Comput. 17 4435 (2021).

QMD-DFTB (link) C.H. Pham*, R.K. Lindsey, L.E.
Fried, N. Goldman, J. Phys. Chem.
Lett. 13 2934 (2022).

10.3. Reference Key Definitions 45

https://doi.org/10.1021/acs.jctc.7b00867
https://doi.org/10.1021/acs.jctc.8b00165
https://doi.org/10.1021/acs.jctc.8b00831
https://doi.org/10.1063/5.0012840
https://doi.org/10.1063/5.0021965
https://doi.org/10.1038/s41467-019-14034-z
https://doi.org/10.1063/5.0029011
https://doi.org/10.26434/chemrxiv.14043839.v1
https://doi.org/10.1021/acs.jctc.1c00172
https://doi.org/10.1021/acs.jpclett.2c00453

chimes_calculator Documentation, Release 0.0.1

46 Chapter 10. Citing ChIMES

CHAPTER

ELEVEN

CONTRIBUTING TO CHIMES

The ChIMES calculator is an open source project, and we welcome contributions, e.g. bug fixes, updates to the docu-
mentation, extensions, etc.

Contributions are made through the fork/pull request (PR) mechanism and generally, PRs should start from and target
the develop branch. Additionally, PRs should include an attached test suite log file (see below).

11.1 Running the test suite

To run the ChIMES calculator tests, simply navigate to serial_interface/tests/ an run ./run_tests.sh |
tee run_tests.log.

Note: The run_tests.sh shell script assumes that a binary named python3.7 exists in the users $PATH. If it does
not exist, users can set the PYTH3 variable near the top of run_tests.sh

Tip: The above command (i.e. ./run_tests.sh | tee run_tests.log) should be used generating a test suite
log file for a PR, but if one desires quickers tests for debugging purposes, the test suite can be run as ./run_tests.sh
SHORT | tee run_tests.log, which reduces the number of test calculations by a factor of roughly ten.

For additional questions and concerns, we can be contacted through our Google group.

47

https://groups.google.com/g/chimes_software

chimes_calculator Documentation, Release 0.0.1

48 Chapter 11. Contributing to ChIMES

CHAPTER

TWELVE

LEGAL

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright 2007 Free Software Foundation, Inc. (link)

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU
General Public License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the
“GNU GPL” refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Application or a
Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by the Library, but which is
not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a
mode of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the Library.
The particular version of the Library with which the Combined Work was made is also called the
“Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for
the Combined Work, excluding any source code for portions of the Combined Work that, considered
in isolation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or source
code for the Application, including any data and utility programs needed for reproducing the Com-
bined Work from the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section
3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data
to be supplied by an Application that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the event an
Application does not supply the function or data, the facility still operates, and performs whatever
part of its purpose remains meaningful, or

49

https://fsf.org/

chimes_calculator Documentation, Release 0.0.1

b) under the GNU GPL, with none of the additional permissions of this License applicable to that
copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of
the Library. You may convey such object code under terms of your choice, provided that, if the
incorporated material is not limited to numerical parameters, data structure layouts and accessors,
or small macros, inline functions and templates (ten or fewer lines in length), you do both of the
following:

a) Give prominent notice with each copy of the object code that the Library is used in it and that
the Library and its use are covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do
not restrict modification of the portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it and
that the Library and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the copyright
notice for the Library among these notices, as well as a reference directing the user to the copies
of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the Corre-
sponding Application Code in a form suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of the Linked Version to pro-
duce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for
conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism
is one that (a) uses at run time a copy of the Library already present on the user’s computer
system, and (b) will operate properly with a modified version of the Library that is interface-
compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such
information under section 6 of the GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the Combined Work produced by recom-
bining or relinking the Application with a modified version of the Linked Version. (If you use
option 4d0, the Installation Information must accompany the Minimal Corresponding Source
and Corresponding Application Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding
Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library
together with other library facilities that are not Applications and are not covered by this License, and
convey such a combined library under terms of your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined
with any other library facilities, conveyed under the terms of this License.

50 Chapter 12. Legal

chimes_calculator Documentation, Release 0.0.1

b) Give prominent notice with the combined library that part of it is a work based on the Library,
and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General
Public License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that
a certain numbered version of the GNU Lesser General Public License “or any later version” applies
to it, you have the option of following the terms and conditions either of that published version or of
any later version published by the Free Software Foundation. If the Library as you received it does
not specify a version number of the GNU Lesser General Public License, you may choose any version
of the GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU
Lesser General Public License shall apply, that proxy’s public statement of acceptance of any version
is permanent authorization for you to choose that version for the Library.

51

chimes_calculator Documentation, Release 0.0.1

52 Chapter 12. Legal

CHAPTER

THIRTEEN

CONTACT

We can be contacted via our Google group.

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not in-
fringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States Government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

53

https://groups.google.com/g/chimes_software

	ChIMES Calculator Quickstart guide
	Obtain a copy
	Installing
	Running

	Getting Started
	Obtaining the code
	LLNL Employees:
	GitHub Users:

	Compiling and running the code

	ChIMES Calculator Releases
	The ChIMES Calculator
	Overview
	Sections
	The ChIMES Calculator
	The C API
	The Fortran API
	The Python API
	Implementation Examples

	The ChIMES Calculator Serial Interface
	Overview
	The ChIMES Calculator Serial Interface
	The C API
	The Fortran90 API
	The Fortran2008 API
	The Python API
	Implementation Examples

	Support for Linking with External Codes
	Using the ChIMES Calculator with LAMMPS
	Quick start
	Detailed Compilation Overview
	Running

	ChIMES Parameter Files
	ChIMES Units
	ChIMES Calculator Utilities
	The PES Generator
	Input
	Output
	Visualizing

	Citing ChIMES
	Reference Key for Methods/Applications
	Reference Key for Parameter Sets
	Reference Key Definitions

	Contributing to ChIMES
	Running the test suite

	Legal
	Contact

