chimes_calculator Documentation Release 0.0.1

Rebecca K. Lindsey, Nir Goldman, & Laurence E. Fried

Mar 16, 2023

CONTENTS

1	ChIMES Calculator Quickstart guide	3
2	Getting Started	5
3	ChIMES Calculator Releases	7
4	The ChIMES Calculator	9
5	The ChIMES Calculator Serial Interface	21
6	Support for Linking with External Codes	33
7	ChIMES Parameter Files	35
8	ChIMES Units	37
9	ChIMES Calculator Utilities	39
10	Citing ChIMES	43
11	Contributing to ChIMES	47
12	Legal	49
13	Contact	53

The **Ch**ebyshev Interaction **M**odel for Efficient Simulation (ChIMES) is a machine-learned interatomic potential targeting chemistry in condensed phase systems. ChIMES models are able to approach quantum-accuracy through a systematically improvable explicitly many-bodied basis comprised of linear combinations of Chebyshev polynomials. Though originally developed to enable description of organic molecular materials, ChIMES has successfully been applied to systems spanning ambient water to molten carbon, and leveraged as correction for density functional based tight binding simulations.

The ChIMES calculator comprises a flexible tool set for evaluating ChIMES interactions (e.g. in simulations, single point calculations, etc). Users have the option of directly embedding the ChIMES calculator within their codes (e.g. see "The ChIMES Calculator," for advanced users), or evaluating interactions through the beginner-friendly serial interface, each of which have Python, C++, C, and Fortran API's. Files necessary for linking to popular simulation codes are being continually added with ancillary support. For more information see the links below.

The ChIMES Calculator is developed at Lawrence Livermore National Laboratory with funding from the US Department of Energy (DOE), and is open source, distributed under the terms of the LGPL v3.0 License.

Note: This documentation is under still construction.

ONE

CHIMES CALCULATOR QUICKSTART GUIDE

For more detailed instructions, see the Getting Started page.

1.1 Obtain a copy

- 1. Create a fork of the code
- 2. Clone a copy of the code to your computer or high-performance computer (HPC)

1.2 Installing

If your environment is correctly configured, you can install by simply executing ./install.sh.

If you are on a HPC using module files, you may need to load them first. Module files are already configured for a handful of HPC - inspect the contents of modfiles to see if yours is listed. If it is (e.g., LLNL-LC.mod), execute export hosttype=LLNL-LC; ./install.sh to install. Otherwise, load the appropriate modules by hand before running the install script.

Note: Consider submitting module files and corresponding install.sh changes as a pull request, for your HPC!

1.3 Running

You can test your installation by running an example job, e.g., by executing the following in your base chimes_calculator directory:

```
serial_interface/examples/cpp/chimescalc \
serial_interface/tests/force_fields/published_params.liqC.2b.cubic.txt \
serial_interface/tests/configurations/liqC.2.5gcc_6000K.OUTCAR_#000.xyz | tee my_test.log
```

TWO

GETTING STARTED

2.1 Obtaining the code

2.1.1 LLNL Employees:

Please see the special Bitbucket instructions

2.1.2 GitHub Users:

Please see the special Github instructions

2.2 Compiling and running the code

As described above, the chimes_calculator comprises library tools for evaluating ChIMES interactions. However, the repository contains several usage examples (see, e.g. *ChIMES Calculator* and *ChIMES Calculator Serial Interface* examples.). These examples can be compiled by navigating to a given example sub directory (e.g. chimes FF/ examples/cpp/) and typing make.

Alternatively, the entire software suite can be compiled at once using CMake, via the install script - note that C++, C, *and* Fortran compilers are all required to use the this approach.

If your environment is correctly configured, you can simply execute ./install.sh.

If you are on a HPC using module files, you may need to load them first. Module files are already configured for a handful of HPC - inspect the contents of modfiles to see if yours is listed. If it is (e.g., LLNL-LC.mod), execute export hosttype=LLNL-LC; ./install.sh to install. Otherwise, load the appropriate modules by hand before running the install script.

Note: Consider submitting module files and corresponding install.sh changes as a PR, for your HPC!

, or executing the appropriate CMake commands by simply running ./install.sh from the base chimes_calculator directory. If the latter option is used, a list of generated executables/library files and their respective install locations can be found in the generated build/install_manifest.txt file. Note that C++, C, and Fortran compilers are all required to use the ./install.sh approach.

Sample ChIMES parameter and input files are provided in the serial_interface/tests/force_fields and serial_interface/tests/configurations directories, allowing compiled executables to be tested via, e.g.:

```
serial_interface/examples/cpp/chimescalc \
serial_interface/tests/force_fields/published_params.liqC.2b.cubic.txt \
serial_interface/tests/configurations/liqC.2.5gcc_6000K.OUTCAR_#000.xyz | tee my_test.log
```

For additional details on using, integrating, and compiling, and contributing, see:

- The ChIMES Calculator
- The ChIMES Calculator Serial Interface
- Contributing

THREE

CHIMES CALCULATOR RELEASES

- v1.0.2: (Jan. 6 2022) Test suite bug fixes, file renaming, documentation update
- v1.0.1: (Dec. 22, 2021) CMake/Make bugfixes
- v1.0.0: (Dec. 12, 2021) First stable release

THE CHIMES CALCULATOR

4.1 Overview

ChIMES is a reactive explicitly many-bodied machine learned interatomic potential (ML-IAP) for which interactions are computed on the basis of atom clusters. For example, the total ChIMES energy is given as:

$$E_{n_{\rm B}} = \sum_{i_1}^{n_a} {}^{1}E_{i_1} + \sum_{i_1 > i_2}^{n_a} {}^{2}E_{i_1i_2} + \sum_{i_1 > i_2 > i_3}^{n_a} {}^{3}E_{i_1i_2i_3} + \dots + \sum_{i_1 > i_2 \dots > i_{n_{\rm B}-1} > i_{n_{\rm B}}}^{n_a} {}^{n_a}E_{i_1i_2\dots i_n}$$

(4.1)

where $E_{n_{\rm B}}$ is the total ChIMES system energy, $n_{\rm B}$ is the maximum bodiedness, ${}^{n}E_{i_{1}i_{2}...i_{n}}$ is the *n*-body ChIMES energy for a given set of *n* atoms with indices $i = i_{1}, i_{2}, ..., i_{n}$, and n_{a} is the total number of atoms in the system. In the ChIMES framework, single-body energies are constant values and *n*-body energies are constructed from the product of polynomials of transformed atom pair distances. Thus, a 2-body interaction would involve a single pair, ij, while a three-body interaction would involve three pairs, ij, ik, and jk, a 4-body interaction would involve $\binom{4}{2}$ pairs, and so on. Currently, the ChIMES calculator supports up to 4-body interactions.

For further details of the ChIMES ML-IAP equations, the reader is referred to the following. For a complete set of ChIMES references, see *Citing ChIMES*.

- 1. R.K. Lindsey*, L.E. Fried, N. Goldman, J. Chem. Theory Comput., 13 6222 (2017). (link)
- 2. R.K. Lindsey*, L.E. Fried, N. Goldman, J. Chem. Theory Comput. 15 436 (2019). (link)
- 3. R.K. Lindsey*, N. Goldman, L.E. Fried, S. Bastea, J. Chem. Phys. 153 054103 (2020). (link)
- 4. R.K. Lindsey*, L.E. Fried, N. Goldman, S. Bastea, J. Chem. Phys. 153 134117 (2020). (link)

Corresponding authors are indicated with an asterisk (*).

4.2 Sections

- ChIMES Calculator
- CAPI
- Fortran API
- Python API
- Implementation Examples

4.3 The ChIMES Calculator

The ChIMES Calculator source files are located in chimesFF/src. To use in a C++ code, simply #include "chimescalc.h" in the target code and instantiate a chimesFF object. As described in greater detail below, chimesFF objects take information on individual atom clusters and provide the corresponding ChIMES energy, stress tensor, and forces. Any such code must at least include the following operations, in order:

Note that the ChIMES calculator chimesFF class provides users with the following functions:

Return Type	Name	Arguments and Description
void	init	
		TypeDescriptionintMPI rank
		Set the MPI rank. With the excep-
		tion of error messages, the ChIMES calculator will only print output for
		rank 0.
void	read_parameters	
		TypeDescriptionstringParameter file
		Read the chimes parameter file.
void	set_atomtypes	
		TypeDescriptionvec-List of atom types de-
		tor <stringned by="" file<="" parameter="" td=""></stringned>
		(updated by function)
		Update the input vector with atom
double	may autoff 2D	types in the parameter file.
double	max_cutoff_2B	Type Description
		bool Flag: If true, prints largest
		2-body cutoff
		Returns the maximum 2-body outer cutoff distance.
double	max_cutoff_3B	
		Type Description
		boolFlag: If true, prints largest3-body cutoff
		Returns the maximum 3-body outer
double	max_cutoff_4B	cutoff distance.
		Type Description
		bool Flag: If true, prints largest
		4-body cutoff
		Returns the maximum 4-body outer cutoff distance.
void	compute_1B	
		Type Description
		intAtom type indexdoubleEnergy (updated)
		Update energy with the single atom contribution.
void	compute_2B	
		Type Description
4.3. The ChIMES Calculator		dou- Distance between two ble atoms, i and j
		vec- Distance vector compo-
		tor <doublerats atom<="" each="" for="" td=""></doublerats>
		vec- Type indices for atoms i

4.3.1 The C API

The C API (chimescalc_C*) is located in chimesFF/api. This wrapper provides C style name mangling and creates a set of C-style wrapper functions. The latter are needed for compatibility with std::vector which is heavily used in chimesFF and not supported in most other languages. Any C code attempting to use the ChIMES Calculator should #include "chimescalc_C.h" and at least include the following operations, in order:

For additional information on compiling, see Implementation Examples.

Note that the ChIMES calculator chimescalc_C API provides users with the following functions:

Return Type	Name	Arguments and Description
void	set_chimes	No arguments. Instantiates a pointer
void	init_chimes	to a chimesFF object.
volu	Int_ennies	TypeDescriptionintMPI rank
		Set the MPI rank. With the excep- tion of error messages, the ChIMES calculator will only print output for rank 0.
void	chimes_read_params	
		TypeDescriptionchar*Parameter file
int	get_chimes_2b_order	Read the chimes parameter file.No arguments. Returns the two bodyorder set by the parameter file.
int	get_chimes_3b_order	No arguments. Returns the three body order set by the parameter file.
int	get_chimes_4b_order	No arguments. Returns the four body order set by the parameter file.
double	get_chimes_max_2b_cutoff	No arguments. Returns the two body maximum outer cutoff set by the pa- rameter file.
double	get_chimes_max_3b_cutoff	No arguments. Returns the three body maximum outer cutoff set by the parameter file.
double	get_chimes_max_4b_cutoff	No arguments. Returns the four body maximum outer cutoff set by the parameter file.
void	chimes_compute_2b_props	
		TypeDescriptiondou-Distance between twobleatoms, i and jdou-Distance vector compo-blenents for each atomar-raychar*Atom types for atoms iar-and jraydou-bleForces for atoms i andblej ([atom index (out of
		ar- ray2)][component index (i.e. $fx=0, fy=1, fz=3)])$ (con- tents updated by function)dou- dou-Stress tensor ($[s_xx, s_xy,$ ble $s_xz, s_yx, s_yy, s_yz,$ ar- $s_zx, s_zy, s_zz]$) (con- ray tents updated by function)dou- dou- ble*Energy (updated by func- ble*
4.3. The ChIMES Calcu	lator	Update the force, stress tensor, an d3 energy with the two-atom contribution.
void	chimes_compute_3b_props	

4.3.2 The Fortran API

The Fortran API (chimescalc_F.f90) is located in chimesFF/api. This wrapper enables access to chimesFF functions through the C API and handles other details like differences in array storage order.

Any Fortran code attempting to use the ChIMES Calculator should use chimescalc and at least include the following operations, in order:

For additional information on compiling, see Implementation Examples.

Note that the ChIMES calculator chimescalc_F API provides users with the following functions:

Return Type	Name	Arguments and Description
none	f_chimes_compute_2b_props_fr	omf90
		Type Description
		C_dou D iestance between two
		atoms, i and j
		C_douDiestance vector compo-
		ar- nents for each atom
		ray
		C_charType for atom i
		C_charType for atom j
		C_doublerces for atoms i and
		ar- j ([atom index (out of
		ray 2)][component index (i.e.
		fx=0, fy=1, fz=3)]) (con-
		tents updated by function)
		C_dou Sta ress tensor ([s_xx, s_xy,
		ar-s_xz, s_yx, s_yy, s_yz,rays_zx, s_zy, s_zz]) (con-
		ray s_zx, s_zy, s_zz]) (con- tents updated by function)
		C_doubleergy (updated by func-
		tion)
		Update the force, stress tensor, and
		energy with the two-atom contribu-
		tion.
none	f_chimes_compute_3b_props_fr	omf90
		Type Description
		C_douDistances between three
		ar- atoms, ij, ik, and jk
		ray
		C_doublestance vector compo-
		ar- nents for each atom
		ray Casha Tuna fan stann i
		C_charType for atom i C_charType for atom j
		C_charType for atom k C_dou Depress for atoms i, j, and
		ar- k ([atom index (out of
		ray 3)][component index (i.e.
		fx=0, fy=1, fz=3)]) (con-
		tents updated by function)
		C_dou Sta ess tensor ([s_xx, s_xy,
		ar- s_xz, s_yx, s_yy, s_yz,
		ray s_zx, s_zy, s_zz]) (con-
		tents updated by function)
		C_doubleergy (updated by func-
		tion)
		Update the force, stress tensor, and
		energy with the three-atom contribu-
		tion.
none	f_chimes_compute_4b_props_fr	omf90
		Type Description
		C dou D istances between four
4.3. The ChIMES Calculato	r	ar- atoms, ij, ik, il, jk, jl, and 15
		ray
		C_dou D <i>i</i> estance vector compo-
		ar- nents for each atom

4.3.3 The Python API

The Python API (chimescalc_py*) is located in chimesFF/api. Like the Fortran API, this wrapper enables access to chimesFF functions through the C API, via ctypes.

Any python code attempting to use the ChIMES Calculator should import chimescalc_py and at least include the following operations, in order:

For additional information on compiling (i.e. generation of chimescalc_dl.so), see Implementation Examples.

Note that the ChIMES calculator chimescalc_py API provides users with the following functions:

Return Type	Name	Arguments and Description
ctypes	init_chimes_wrapper	
		Type Description
		str C-wrapper library name
		(i.e. "lib-C_wrapper- serial_interface.so")
		senai_interface.so)
none	set_chimes	No arguments. Instantiates a pointer
		to a chimesFF object.
none	init_chimes	
		TypeDescriptionintMPI rank (optional pa-
		int MPI rank (optional pa- rameter)
		Set the MPI rank. With the excep-
		tion of error messages, the ChIMES
		calculator will only print output for rank 0.
none	read_params	
		Type Description
		str Parameter file
float	get_chimes_max_2b_cutoff	No arguments. Returns the two body
		order set by the parameter file.
float	get_chimes_max_2b_cutoff	No arguments. Returns the three
float	get_chimes_max_2b_cutoff	body order set by the parameter file.No arguments.Returns the four
nout		body order set by the parameter file.
int	get_chimes_2b_order	No arguments. Returns the two body maximum outer cutoff.
int	get_chimes_3b_order	No arguments. Returns the three
		body maximum outer cutoff.
int	get_chimes_4b_order	No arguments. Returns the four body maximum outer cutoff.
none	chimes_compute_2b_props	
		Type Description
		float Distances between atoms i
		and j
		floatDistancevectorcompo-listnents for each atom
		listnents for each atomstrTypes for atom i and j
		list
		float Forces for atoms i, and
		list j ([atom index (out of
		2)][component index (i.e. fx=0, fy=1, fz=3)]) (con-
		tents updated by function)
		float Stress tensor ([s_xx, s_xy,
		list s_xz, s_yx, s_yy, s_yz,
		s_zx, s_zy, s_zz]) (con- tents updated by function)
		float Energy (updated by func-
4.3. The ChIMES Calculator	r	tion) 17
		Update the force, stress tensor, and
		energy with the two-atom contribu-
		tion.

4.3.4 Implementation Examples

The following codes demonstrates how chimesFF. {h, cpp} can be used to obtain the overall stress tensor, energy, and per-atom forces for a given system configuration using C, C++ Fortran, and Python. See the main.* files in each corresponding subdirectory of chimesFF/examples for further implementation details. Note that sample system configurations (i.e. *xyz files) and parameter files can be found in serial_interface/test/configurations and serial_interface/test/force_fields, respectively. For user generated tests, note that *.xyz files must provide lattice vectors in the comment line, e.g. lx 0.0 0.0 0.0 ly 0.0 0.0 0.0 lz. Click *here* for an overview of ChIMES units.

Note: All implementation examples are intended to be run on Unix-based systems (e.g. Linux, OSX).

Warning: These codes are for demonstrative purposes only and come with no guarantees.

Note: All example executables can be compiled at once in ./build with CMake, via ./install.sh from the chimes_calculator base directory, and similarly uninstalled via ./uninstall.sh. However, the examples below compile via the user-generated Makefiles located in each examples subdirectory, for demonstrative purposes.

- C Example: The main function of this example includes the C API, chimescalc_C. {h, cpp}, which creates a global static pointer to a chimesFF object. The chimesFF pointer object is set up, i.e. by set_chimes(), and used for access to chimesFF member functions, etc.
 - Navigate to chimesFF/examples/c
 - Compile with: make all
 - Test with: ./chimescalc-test_direct-C <parameter file> <xyz file>
 - Additional notes:
 - * *.xyz files must not contain any information beyond atom type and x-, y-, and z- coordinate on coordinate lines.
 - * This implementation does NOT use ghost atoms/layering thus the input system MUST have box lengths greater than two times the largest outer cutoff, or results will not be correct.
- C++ Example: The main function of this example creates an instance of serial_chimes_interface (i.e. a class inheriting chimesFF, which computes energy, per-atom forces, and stress tensor for an overall system). For additional details, see *The ChIMES Calculator Serial Interface*
 - Navigate to chimesFF/examples/cpp
 - Compile with: make all
 - Test with: ./chimescalc <parameter file> <xyz file>
- Fortran Example: Similar to the C example, this main function establishes a pointer to a chimesFF object via f_set_chimes(). The f_set_chimes() function call is defined in chimescalc_F.f90, a wrapper for the C API chimescalc_C.cpp (i.e which facilitates C-style access to chimesFF member functions, etc). Actual linking is achieved at compilation. See the Makefile for details.
 - Navigate to chimesFF/examples/fortran
 - Compile with: make all

- Test with: ./chimescalc-test_direct-F <parameter file> <xyz file>
- Additional notes:
 - * *.xyz files must not contain any information beyond atom type and x-, y-, and z- coordinate on coordinate lines.
 - * This implementation does NOT use ghost atoms/layering thus the input system MUST have box lengths greater than two times the largest outer cutoff, or results will not be correct.
- **Python Example:** This example accesses chimesFF functions through chimescalc_py.py, a ctypes-based python API for access to the C API functions (i.e. through chimescalc_C.cpp). Once chimescalc_py.py is imported, it is associated with a compiled C API library file, i.e. chimescalc_dl.so and can be used to access chimesFF member functions.
 - Navigate to chimesFF/examples/python
 - Compile chimescalc_dl.so with: make all
 - Test with: python main.py <parameter file> <coordinate file>
 - Additional notes:
 - * Requires chimescalc_dl.so in the same directory, which is generated via make all
 - * Expects to be run with Python version 3.X

Warning: This Python implementation example does NOT use ghost atoms/layering thus the input system MUST have box lengths greater than two times the largest outer cutoff, or results will not be correct.

FIVE

THE CHIMES CALCULATOR SERIAL INTERFACE

5.1 Overview

The ChIMES calculator serial interface provides an easier means of evaluating ChIMES interactions for a given system. In constrast to the ChIMES calculator (i.e. chimesFF), which takes information on *individual* atom clusters and returns the cluster energy, stress tensor, via compute_xB functions, the serial interface (i.e. serial_chimes_interface) takes *overall* system information and returns *overall* system energy, stress tensor, and forces. Though far less flexible than direct use of chimesFF, serial_chimes_interface allows users to leverage ChIMES with much less coding. For further details on chimesFF, see *The ChIMES Calculator*. For a complete set of ChIMES references, see *Citing ChIMES*. Note that this functionality is primarily intended for instructive purposes, and is not recommended for large scale simulations.

5.2 The ChIMES Calculator Serial Interface

The ChIMES calculator serial interface source files are located in serial_interface/src/. To use in a C++ code, simply #include "serial_chimes_interface.h" in the target code and instantiate a serial_chimes_interface object. As described in greater detail below, serial_chimes_interface objects take information on the overall system and provide the corresponding ChIMES energy, stress tensor, and forces. Any such code must initialize the calculation the with following operations, in order:

Warning:

For small simulation cells (e.g., a single atom in a face-centered cubic unit cell), the ChIMES calculator must be instantiated via serial_chimes_interface chimes(true). This allows for automatic replication in situations where the ChIMES outer cutoff is greater than one half of the smallest supercell length. Please note that use of extra-small simulation cells is ill-advised for aything except crystalline systems and should be used with caution.

Developer note: To recover behavior of the research code, instantiate with: serial_chimes_interface chimes(false).

Please see the following example of interfacing a C++ code with the ChIMES calculator: serial_interface/ examples/cpp/main.cpp. Note that the ChIMES calculator serial_chimes_interface class provides users with the following functions:

Return Type	Name	Arguments and Description
void	init_chimesFF	
		Type Description
		string Parameter file
		int MPI rank
		Instantiates
		<pre>serial_chimes_interface</pre>
		object, sets rank, reads parameter
		file. With the exception of error
		messages, the ChIMES calculator
		will only print output for rank 0.
void	calculate	
		Type Description
		vec- Vector of x-coordinates
		tor <doubfer atoms<="" system="" td=""></doubfer>
		vec- Vector of y-coordinates
		tor <doubfer atoms<="" system="" td=""></doubfer>
		vec- Vector of z-coordinates
		tor <doubfer atoms<="" system="" td=""></doubfer>
		vec- System cell a lattice
		tor <doubleetor< td=""></doubleetor<>
		vec- System cell b lattice tor <doubleetor< td=""></doubleetor<>
		vec- System cell c lattice
		tor <doubleeetor< td=""></doubleeetor<>
		vec- Vector of atom types for
		tor <stringsystem atoms<="" td=""></stringsystem>
		dou- Overall system energy
		ble (updated by function)
		vec- Vector of forces for sys-
		tor <vectotest (updated="" by<="" doatbless="" td=""></vectotest>
		> function); ([atom in-
		dex][fx, fy, fz])
		vec- System stress tensor
		tor <doub(expdated by="" function);<="" td=""></doub(expdated>
		([s_xx, s_xy, s_xz,
		s_yx, s_yy, s_yz, s_zx,
		s_zy, s_zz])
		Takes system coordinates and cell
		lattice vectors, computes corre-
		sponding ChIMES energy, stress
		tensor, and system forces.

5.2.1 The C API

The C API (chimescalc_serial_C*) is located in serial_interface/api. This wrapper provides C style name mangling and creates a set of C-style wrapper functions. The latter are needed for compatibility with std::vector which is heavily used in serial_chimes_interface and not supported in most other languages. Any C code attempting to use the ChIMES calculator serial interface should #include "chimescalc_serial_C.h" and initialize calculations with the following operations, in order:

Please see the following example of interfacing a C code with the ChIMES calculator: serial_interface/ examples/c/main.c. For additional information on compiling, see *Implementation Examples*.

Note that the ChIMES calculator serial interface chimescalc_serial_C API provides users with the following functions:

Return Type	Name	Arguments and Description
void	set_chimes_serial	Creates a pointer to a
		<pre>serial_chimes_interface</pre>
		object.
		Type Description
		int Boolean: Allow for small
		cell replication? (0/1 for
		false/true); default = true
void	init_chimes_serial	
		Type Description
		string Parameter file
		int MPI rank
		Sets rank and reads the
		parameter file to the
		serial_chimes_interface
		object. With the exception of error
		messages, the ChIMES calculator
void	calculate_chimes	will only print output for rank 0.
void	calculate_chimes	
		Type Description
		int number of atoms in sys-
		dou- Vector of x-coordinates
		ble for system atoms
		ar-
		ray
		dou- Vector of y-coordinates
		ble for system atoms
		ar-
		ray
		dou- Vector of z-coordinates
		ble for system atoms
		ar-
		ray char System cell a lattice vector
		ar-
		ray
		dou- System cell b lattice vec-
		ble tor
		ar-
		ray
		dou- System cell c lattice vector
		ble
		ar-
		ray dou- Vector of atom types for
		ble system atoms
		ar-
		ray
		dou- Overall system energy
		ble* (updated by function)
24	Chapter 5	. The ChIMES Calculator/Serial Interfac
		ble system atoms (updated
		ar- by function); ([atom
		ray index][fx, fy, fz])

5.2.2 The Fortran90 API

The Fortran90 API (chimescalc_serial_F.f90) is located in serial_interface/api. This wrapper enables access to serial_chimes_interface functions through the C API and handles other details like differences in array storage order.

Any Fortran90 code attempting to use the ChIMES Calculator should use chimescalc_serial and at least include the following operations, in order:

Please see the following example of interfacing a Fortran90 code with the ChIMES calculator: serial_interface/ examples/fortran/main.F90. For additional information on compiling, see *Implementation Examples*.

Note that the ChIMES calculator serial interface chimescalc_serial_F API provides users with the following functions:

Return Type	Name	Arguments and Description
none	f_set_chimes	Creates a pointer to a
		<pre>serial_chimes_interface</pre>
		object.
		Type Description
		C_int Boolean: Allow replica-
		tion? (0/1 for false/true);
		default = true
none	f_init_chimes	
		Type Description
		C_char Parameter file
		C_int MPI rank
		Sets rank and reads the
		parameter file to the
		serial_chimes_interface
		object. With the exception of error
		messages, the ChIMES calculator
void	f_calculate_chimes	will only print output for rank 0.
volu	1_calculate_chilles	
		Type Description
		C_int number of atoms in sys- tem
		C_doublector of x-coordinates
		ar- for system atoms
		ray
		C_doublector of y-coordinates
		ar- for system atoms
		ray
		C_doublector of z-coordinates
		ar- for system atoms
		C_charSystem cell a lattice vec-
		ar- tor
		ray
		C_doublystem cell b lattice vec-
		ar- tor
		ray
		C_doublestem cell c lattice vec-
		ar- tor
		C_doublector of atom types for
		ar- system atoms
		ray
		C_doul@ečrall system energy
		(updated by function)
		C_doublector of forces for
		ar- system atoms (updated
		ray by function); ([atom
		index][fx, fy, fz])
		C_doublystem stress tensor ar- (updated by function);
26	Chapter 5.	The ChIMES Calculator Serial Interface
		s_yy, s_yz, s_zx, s_zy,
		s_zz])

5.2.3 The Fortran2008 API

The Fortran2008 API (chimescalc_serial_F08.f90) is located in serial_interface/api. This wrapper enables access to serial_chimes_interface functions through the C API and handles other details like differences in array storage order.

Any Fortran2008 code attempting to use the ChIMES Calculator should use chimescalc_serial08, only : ChimesCalc, ChimesCalc_init and at least include the following operations, in order:

Please see the following example of interfacing a Fortran2008 code with the ChIMES calculator: serial_interface/ examples/fortran08/main.F90.For additional information on compiling, see *Implementation Examples*.

Note that the ChIMES calculator serial interface chimescalc_serial_F08 API provides users with the following functions:

Code Type	Name	Arguments and Description
subroutine	ChimesCalc_init	Creates a pointer to a
		serial_chimes_interface
		object through function calls to the
		Fortran90 API module.
		Type Description
		Chimes Cladicialized chimes calcu-
		lator instance on exit
		char- Name of the parameter
		ac- file to use for the initial-
		ter(*) ization
		inte- MPI process rank
		ger
		inte- Set to 0/1 for false/true
		ger for small cells
subroutine	<chimescalc>%set_atom_types</chimescalc>	Converts Fortran char array to C/C++ string array.
		char- Fortran array of atom
		ac- types. Subroutine con-
		ter(*) verts to C/C++ string ar-
		rays.
subroutine	<chimescalc>%calculate</chimescalc>	Performs ChIMES calculation based on simulation cell inputs
		Type Description
		dou- 2D array of atomic co-
		ble ordinates with shape of
		pre- (3,n_atom)
		ci-
		sion
		dou- Lattice vectors. Shape:
		ble [3, 3], first index runs
		ci- lattice vectors.
		sion
		dou- Variable which should
		ble be increased by the
		pre- ChIMES energy.
		ci-
		sion
		dou- Forces, which ChIMES
		ble contribution should be
		pre- added to. Shape: [3,
		ci- nr_of_atoms].
		sion
		dou- Stress tensor, which the
		ble ChIMES contribution
		pre- should be added to.
		ci- Shape: [3, 3].
		ci- sion ChIMES Calculator Serial Interface

5.2.4 The Python API

The Python API (chimescalc_serial_py.py) is located in serial_interface/api. Like the Fortran API, this wrapper enables access to serial_chimes_interface functions through the C API, via ctypes.

Any python code attempting to use the ChIMES Calculator should import chimescalc_serial_py and at least include the following operations, in order:

For additional information on compiling (i.e. generation of lib-C_wrapper-serial_interface.so), see *Implementation Examples*.

Note that the ChIMES calculator serial interface chimescalc_serial_py API provides users with the following functions:

Return Type	Name	Arguments and Description
See description	init_chimes_wrapper	
		TypeDescriptionstringLibrary name
		Associate ctypes.CDLL (i.e. the return type) with a the compiled
		ChIMES calculator serial interface C-library.
void	set_chimes	Creates a pointer to a
		serial_chimes_interface object.
		TypeDescriptionboolAllow replication? ; de-
		fault = true
void	init_chimes	
		Type Description
		stringParameter fileintMPI rank
		Sets rank and reads the parameter file to the
		serial_chimes_interface
		object. With the exception of error messages, the ChIMES calculator
		will only print output for rank 0.
See description	calculate_chimes	
		Type Description (in-
		put)
		int number of atoms in sys- tem
		float Vector of x-coordinates
		listfor system atomsfloatVector of y-coordinates
		list for system atoms
		float Vector of z-coordinates
		list for system atoms str System cell a lattice vec-
		list tor
		floatSystem cell b lattice vec-listtor
		float System cell c lattice vec-
		list tor float Vactor of atom types for
		floatVector of atom types forlistsystem atoms
		float Overall system energy
		floatVectorofforcesforlistsystematoms([atom
		index][fx, fy, fz])
		float System stress tensor
30	Chapter 5. The C	List ([s_xx, s_xy, s_xz, s_yx, ChIMES Calculator, Serial, Interface s_zz])
		Takes system coordinates and cell

5.2.5 Implementation Examples

The following codes demonstrates how serial_chimes_interface. {h, cpp} can be used to obtain the overall stress tensor, energy, and per-atom forces for a given system configuration using C, C++ Fortran, and Python. See the main.* files in each corresponding subdirectory of serial_interface/examples for further implementation details. Note that sample system configurations (i.e. *xyz files) and parameter files can be found in serial_interface/test/ configurations and serial_interface/test/force_fields, respectively. For user generated tests, note that *.xyz files must provide lattice vectors in the comment line, e.g. lx 0.0 0.0 0.0 ly 0.0 0.0 lz. Click *here* for an overview of ChIMES units.

Note: All implementation examples are intended to be run on Unix-based systems (e.g. Linux, OSX).

Warning: These codes are for demonstrative purposes only and come with no guarantees.

Note: All example executables can be compiled at once in ./build with CMake, via ./install.sh from the chimes_calculator base directory, and similarly uninstalled via ./uninstall.sh. However, the examples below compile via the user-generated Makefiles located in each examples subdirectory, for demonstrative purposes.

- C Example: The main function of this example includes the C API, chimescalc_serial_C. {h,cpp}, which creates a global static pointer to a serial_chimes_interface object. The serial_chimes_interface pointer object is set up, i.e. by set_chimes_serial(), and used for access to serial_chimes_interface member functions, etc.
 - Navigate to serial_interface/examples/c
 - Compile with: make all
 - Test with: ./chimescalc-test_serial-C <parameter file> <xyz file>
- C++ Example: The main function of this example creates an instance of serial_chimes_interface (i.e. a class inheriting chimesFF, which computes energy, per-atom forces, and stress tensor for an overall system). For additional details, see *The ChIMES Calculator*
 - Navigate to serial_interface/examples/cpp
 - Compile with: make all
 - Test with: ./chimescalc <parameter file> <xyz file>
- Fortran90 Example: Similar to the C example, this main function establishes a pointer to a serial_chimes_interface object via f_set_chimes(). The f_set_chimes() function call is defined in chimescalc_serial_F.F90, a wrapper for the C API chimescalc_serial_C.cpp (i.e which facilitates C-style access to serial_chimes_interface member functions, etc). Actual linking is achieved at compilation. See the Makefile for details.
 - Navigate to serial_interface/examples/fortran
 - Compile with: make all
 - Test with: ./chimescalc-test_serial-F <parameter file> <xyz file>
 - Additional notes:

- Fortran2008 Example: Similarly, this main function establishes a pointer to a serial_chimes_interface object via calls to ChimesCalc_init() and subroutine calls within the ChimesCalc class, defined in chimesCalc_serial_F08.f90. Subroutines called from the Fortran2008 API act as an interface for the wrapper functions establied in the Fortran90 API. Actual linking is achieved at compilation. See the Makefile for details.
 - Navigate to serial_interface/examples/fortran08
 - Compile with: make all
 - Test with: ./chimescalc-test_serial-F08 <parameter file> <xyz file>
 - Additional notes:
- Python Example: This example accesses serial_chimes_interface functions through chimescalc_serial_py.py, a ctypes-based python API for access to the C API functions (i.e. through chimescalc_serial_C.cpp). Once chimescalc_serial_py.py is imported, it is associated with a compiled C API library file, i.e. lib-C_wrapper-serial_interface.so and can be used to access serial_chimes_interface member functions.
 - Navigate to serial_interface/examples/python
 - Compile libchimescalc-serial_dl.so with: make all
 - Rename: cp libchimescalc-serial_dl.so libchimescalc_dl.so
 - Test with: python main.py <parameter file> <coordinate file>

SIX

SUPPORT FOR LINKING WITH EXTERNAL CODES

6.1 Using the ChIMES Calculator with LAMMPS

We are currently working toward ChIMES calculator implementation in LAMMPS as a USER package. In the interim, the following provides a guide to implementing the ChIMES calculator as a LAMMPS pairstyle.

6.1.1 Quick start

Provided a system with a C++11-compatible compiler and an MPI compatible compiler are available, LAMMPS can be downloaded, installed, linked to ChIMES, and compiled all at once by navigating to etc/lmp, adding Intel compilers to your path and executing ./install.sh. Once complete, the installation can be tested by navigating to etc/lmp/tests and running the example via ../exe/lmp_mpi_chimes -i in.lammps.

As with installation of the ChIMES Calculator itself, if you are on a HPC using module files, you may need to load them first. Module files are already configured for a handful of HPC - inspect the contents of modfiles to see if yours is listed. If it is (e.g., LLNL-LC.mod), execute export hosttype=LLNL-LC; ./install.sh to install. Otherwise, load the appropriate modules by hand before running the install script.

Note that Intel oneapi compilers (which are now free) can be used to properly configure your environment for all Intel capabilities (e.g., icc, mpiicpc, mkl, etc.) - simply locate and execute the setvars.sh script within your Intel installation.

6.1.2 Detailed Compilation Overview

Note: This example assumes users have downloaded the 29 Oct 2020 release of LAMMPS (stable version as of 10/29/20), which can be downloaded here.

To integrate the ChIMES calculator in LAMMPS, locate the following files, and place them in the following destination among the LAMMPS source code:

File	Location	Destination	Description
chimesFF.{h,cpp}	chimesFF/	src/	ChIMES calculator files
	src	MANYBODY	
<pre>pair_chimes.{h,</pre>	etc/lmp/	src/	ChIMES pair_style definition files
cpp}	src	MANYBODY	
<pre>pair.{h,cpp}</pre>	etc/lmp/	src	Updated LAMMPS pair files (new ev_tally definition
	etc		added)
Makefile.	etc/lmp/	src/MAKE	Makefile for compiling with ChIMES support
<pre>mpi_chimes</pre>	etc		

Following, compile from the base LAMMPS directory with:

make yes-manybody
make mpi_chimes

Note that a successful compilation should produce an executable named lmp_mpi_chimes.

Tip: If you are using an intel compiler, either delete the pair_list.* files that appear in the src folder following the make yes-manybody command, or add -restrict to CCFLAGS in MAKE/Makefile.mpi_chimes. Note that the presently provided Makefile.mpi_chimes utilizes the latter approach.

6.1.3 Running

To run a simulation using ChIMES parameters, a block like the following is needed in the main LAMMPS input file (i.e. in.lammps):

```
pair_style chimesFF
pair_coeff * * some_standard_chimes_parameter_file.txt
```

Note that the following must also be set in the main LAMMPS input file, to use ChIMES:

units real newton on atom_style atomic atom_modify sort 0 0.0

Warning:

- 1. Implementation assumes outer cutoffs for (n+1)-body interactions are always \leq those for n-body interactions
- 2. This capability is still under testing please let us know if you observe strange behavior
- 3. Assumes user wants single-atom energies to be added to the system energy. If you don't want to, zero the energy offsets in the parameter file

SEVEN

CHIMES PARAMETER FILES

ChIMES parameter files are stored in serial_interface/tests/force_fields. A complete list of available force fields and corresponding references can be found on the *Citing ChIMES page*. These parameter files come with no guarantees and should only be used for system compositions and thermodynamic ranges indicated at the top of each file. If you are interested in developing a ChIMES model for a new material or range of conditions, please contact us via our Google group.

EIGHT

CHIMES UNITS

ChIMES uses the following base units:

Property	Unit
Distance	Angstroms ("Ang")
Energy	kcal mol $^{-1}$
Stress	kcal mol $^{-1}$ Ang $^{-3}$
Force	kcal mol $^{-1}$ Ang $^{-1}$

NINE

CHIMES CALCULATOR UTILITIES

9.1 The PES Generator

9.1.1 Input

A utility for generating ChIMES potential energy surface scans for *n*-body clusters is available in utils/ pes_generator. To use this utility, create a file name config.py in the desired working directory, structured as follows:

```
CHMS_REPO = "/path/to/your/chimes_calculator/repository/"
PARAM_FILE = "/path/to/your/chimes_calculator/repository/serial_interface/tests/force_
→fields/test_params.CHON.txt"
PAIRTYPES = [0,
                   3,
                         5
                             ] # Pair type index for scans, i.e. number after "PAIRTYPE_
→ PARAMS:" in parameter file
PAIRSTART = [1.0, 1.0, 1.0] # Smallest distance for scan
          = [4.0, 4.0, 4.0] # Largest distance for scan
PAIRSTOP
          = [0.01, 0.01, 0.01] # Step size for scan
PAIRSTEP
TRIPTYPES = [1,
                   4 ] # Triplet type index for scans, i.e. number after "TRIPLETTYPE.
→ PARAMS:" in parameter file
TRIPSTART = [1.0, 1.0] # Smallest distance for scan
TRIPSTOP
          = [4.0, 4.0] # Largest distance for scan
TRIPSTEP
          = [0.10, 0.10] # Step size for scan
# The example parameter file doesn't contain four body interactions, so the following is_
\rightarrownot needed.
# If four body scans are desired, keep in mind a small step size will take a long time.
→to run
# Start with something very large to get a handle on run time, and modify from there
#
#QUADTYPES = [7 ] # Triplet type index for scans, i.e. number after "TRIPLETTYPE.
→ PARAMS:" in parameter file
#QUADSTART = [1.0 ] # Smallest distance for scan
#OUADSTOP
            = [4.0] # Largest distance for scan
#OUADSTEP
           = [1.00] # Step size for scan
```

Variables CHMS_REPO and PARAM_FILE specify the chimes_calculator repository location, and path to the ChIMES parameter of file. Note that paths should be provided in their absolute form. Following these variables, three sets of options are provided. Focusing on options beginning with PAIR, one must provide the following:

- A list of pair type indices for which scans should be generated
 - Indices should correspond to values following PAIRTYPE PARAMS: in the target parameter file
- A list of the minimum pair distance for each pair type to consider during the scan
- A list of the maximum pair distance for each pair type to consider during the scan
- A scan step size

All input and output distances are in Angstroms, and all energies are provided in kcal/mol. Additionally, note that the penalty function will be included in scan results unless PAIRSTART is greater than the sum of the pair interaction inner cutoff and the penalty kick-in distance, or if the user has set PAIR CHEBYSHEV PENALTY SCALING: to zero in the parameter file. Similar variables must be set to specify desired 3- and 4-body scans. Note that empty lists can be provided if no scan is desired.

9.1.2 Output

All *n*-body scans will produce output scan files named like chimes_scan_<n>b.type_<index>.dat, where <n> is the bodiedness, and <index> is the PAIRTYPES, TRIPTYPES, or QUADTYPES index. Many-body scans will produce additional files named like chimes_scan_2+3b.type_<index>.dat or chimes_scan_2+3+4b.type_<index>. dat, which include contributions from lower-bodied interactions as well.

The first line in each output file provides a comment (prepended by a #) starting and stopping distances followed by the scan step size. Following, each line provides the *ij* (and if appropriate, *ik*, *il*, *jk*, *jl*, and *kl* distances, respectively) and the corresponding cluster energy. For example, consider the test_params.CHON.txt parameter file provided in serial_interface/tests/force_fields/, which contains the following 3-body interaction:

TRIPLETTYP INDEX:				0		
			•	JE: 54 TOTAL: 54		
index	p	owe	rs	equiv index	param index	parameter
0	 0		1	 0	0	6.500656496400314
0 1	0	1	2	0 1	1	3.7493801790331345
2	0	1	3	2	2	0.0
3	0	2	1	3	3	-4.7147262741975711
4	0	2	2	4	4	-2.0557295465375991
5	0	2	3	5	5	-1.1723283559758126

In the above example, TRIPTYPES is 5, corresponding to i, j, and k atoms of type C, H, and O, respectively. Thus, lines in the corresponding resulting 3-body scan file would give the ij (C-H), ik (C-O), and jk (H-O) distances, followed by the corresponding cluster energy.

9.1.3 Visualizing

Two-body scans can be immediately be plotted by most software (e.g. matplotlib, xmgrace, etc.), however additional considerations are needed to plot the > 3 dimensional 3- and/or 4-body scans. Three body scans can visualized in slices. An additional utility is provided in utils/pes_generator (i.e. gnuplotify), which can be used to extract these slices in a gnuplot splot-friendly format. To use this script, the user must specify a 3-body scan file and a *ij* distance at which to make the slice. Note that the *ij* distance must be one listed in the 3-body scan file. For the test_params.CHON.txt and config.py example above, this can be achieved with:

python3.X gnuplotlify.py chimes_scan_2+3b.type_0.dat 2.5

This command will produce a file named like chimes_scan_2+3b.type_0.dat.gnuplot.2.5 that can be plotted in gnuplot via:

splot 'chimes_scan_2+3b.type_0.dat.gnuplot.2.5' u 1:2:3 w pm3d

TEN

CITING CHIMES

- Reference Key for ChIMES Methods
- Reference Key for ChIMES Parameter Sets
- Reference Key Definitions

10.1 Reference Key for Methods/Applications

Key definitions are given *below*.

Method	Reference Key
2+3-body ChIMES	1. Carbon-1
ChIMES+DFTB	 PuH-DFTB DNTF-DFTB TiH-DFTB QMD-DFTB
Iterative Refinement	1. CO-1
Carbon Condensation	1. CO-1
2+3+4-body ChIMES	1. CO-2
Distributed LASSO	1. CO-2
Active Learning	1. CO-2
ChIMES+MSST	1. HN-1 2. DNTF-DFTB

10.2 Reference Key for Parameter Sets

KEY	Material	Bodied-	T (K)/ ρ (gcc)	Comments
		ness	Range	
Carbon-1	Molten Carbon	2	5000/2.43	N/A
Carbon-1	Molten Carbon	2	5000/2.43	N/A
Carbon-1	Molten Carbon	2+3	5000/2.43	N/A
Carbon-1	Molten Carbon	2+3	6000/2.25-3.00	N/A
Water-1	Water	2+3	298/1.00	N/A
PuH-	Pu/H	2+3	0-300/N/A	DFTB $E_{\rm rep}$
DFTB				
CO-1	Carbon Monoxide (1:1)	2+3	6500-9350/2.5	N/A
CO-2	Carbon Monoxide (1:1)	2+3+4	2400/1.79	N/A
HN-1	Hydrazoic Acid H/N	2+3+4	300-4500/1-2	N/A
DNTF-	3,4-bis(4-nitrofurazan-3-	2+3	300-9000/1.86-	DFTB correction, Not applicable to other
DFTB	yl)furoxan		3.4	atom type ratios
TiH-	Ti/H	2+3	N/A/5.5	DFTB $E_{\rm rep}$
DFTB				
QMD-	C/N/O/H (based on QM	2+3	0/ambient	DFTB correction
DFTB	database)			

Parameter set and key name are interchangeable. Key definitions are given *below*.

10.3 Reference Key Definitions

Corresponding authors are indicated with an asterisk (*).

Key	Link	Definition
Carbon-1	(link)	R.K. Lindsey*, L.E. Fried, N. Gold- man, J. Chem. Theory Comput., 13 6222 (2017).
PuH-DFTB	(link)	N. Goldman*, B. Aradi, R.K. Lindsey, L.E. Fried, J. Chem. Theory Comput. 14 2652 (2018).
Water-1	(link)	R.K. Lindsey*, L.E. Fried, N. Gold- man, J. Chem. Theory Comput. 15 436 (2019).
CO-1	(link)	R.K. Lindsey*, N. Goldman, L.E. Fried, S. Bastea, <i>J. Chem. Phys.</i> 153 054103 (2020).
CO-2	(link)	R.K. Lindsey*, L.E. Fried, N. Gold- man, S. Bastea, <i>J. Chem. Phys.</i> 153 134117 (2020).
COND-1	(link)	M.R. Armstrong*, R.K. Lindsey*, N. Goldman, M.H. Nielsen, E. Stavrou, L.E. Fried, J.M. Zaug, S. Bastea*, <i>Nat, Commun.</i> 11 353 (2020).
HN-1	(link)	H. Pham*, R.K. Lindsey, L.E. Fried, N. Goldman, J. Chem. Phys. 153 224102 (2020).
DNTF-DFTB	(link)	R.K. Lindsey*, S. Bastea*, N. Gold- man, L. Fried, <i>J. Chem. Phys.</i> 154 164115 (2021).
TiH-DFTB	(link)	N. Goldman*, K. Kweon, R.K. Lindsey, L.E. Fried, T.W. Heo, B. Sadigh, P. Soderlind, A. Landa, A. Perron, J. Jef- fries, B. Wood, J. Chem. The- ory Comput. 17 4435 (2021).
QMD-DFTB	(link)	C.H. Pham*, R.K. Lindsey, L.E. Fried, N. Goldman, J. Phys. Chem. Lett. 13 2934 (2022).

ELEVEN

CONTRIBUTING TO CHIMES

The ChIMES calculator is an open source project, and we welcome contributions, e.g. bug fixes, updates to the documentation, extensions, etc.

Contributions are made through the fork/pull request (PR) mechanism and generally, PRs should start from and target the develop branch. Additionally, PRs should include an attached test suite log file (see below).

11.1 Running the test suite

To run the ChIMES calculator tests, simply navigate to serial_interface/tests/ an run ./run_tests.sh | tee run_tests.log.

Note: The run_tests.sh shell script assumes that a binary named python3.7 exists in the users \$PATH. If it does not exist, users can set the PYTH3 variable near the top of run_tests.sh

Tip: The above command (i.e. ./run_tests.sh | tee run_tests.log) should be used generating a test suite log file for a PR, but if one desires quickers tests for debugging purposes, the test suite can be run as ./run_tests.sh SHORT | tee run_tests.log, which reduces the number of test calculations by a factor of roughly ten.

For additional questions and concerns, we can be contacted through our Google group.

TWELVE

LEGAL

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright 2007 Free Software Foundation, Inc. (link)

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNU GPL" refers to version 3 of the GNU General Public License.

"The Library" refers to a covered work governed by this License, other than an Application or a Combined Work as defined below.

An "Application" is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the "Linked Version".

The "Minimal Corresponding Source" for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or

- b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.
- 3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following:

- a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License.
- b) Accompany the object code with a copy of the GNU GPL and this license document.
- 4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following:

- a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License.
- b) Accompany the Combined Work with a copy of the GNU GPL and this license document.
- c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document.
- d) Do one of the following:
 - 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.
 - Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interfacecompatible with the Linked Version.
- e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.)
- 5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License.

- b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.
- 6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.

THIRTEEN

CONTACT

We can be contacted via our Google group.

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.